Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039190904> ?p ?o ?g. }
- W2039190904 endingPage "1350" @default.
- W2039190904 startingPage "1338" @default.
- W2039190904 abstract "The multidimensional knapsack problem (MKP) is a difficult combinatorial optimization problem, which has been proven as NP-hard problems. Various population-based search algorithms are applied to solve these problems. The particle swarm optimization (PSO) technique is adapted in our study, which proposes two novel PSO algorithms, namely, the binary PSO with time-varying acceleration coefficients (BPSOTVAC) and the chaotic binary PSO with time-varying acceleration coefficients (CBPSOTVAC). The two proposed methods were tested using 116 benchmark problems from the OR-Library to validate and demonstrate the efficiency of these algorithms in solving multidimensional knapsack problems. The results were then compared with those in the other two existing PSO algorithms. The simulation and evaluation results showed that the proposed algorithms, BPSOTVAC and CBPSOTVAC, are superior over the other methods according to its success rate, mean absolute deviation, mean absolute percentage error, least error, and standard deviation." @default.
- W2039190904 created "2016-06-24" @default.
- W2039190904 creator A5012513888 @default.
- W2039190904 creator A5047345684 @default.
- W2039190904 creator A5050005710 @default.
- W2039190904 creator A5057762017 @default.
- W2039190904 date "2014-02-01" @default.
- W2039190904 modified "2023-10-16" @default.
- W2039190904 title "Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem" @default.
- W2039190904 cites W1545379711 @default.
- W2039190904 cites W1600739703 @default.
- W2039190904 cites W1972300623 @default.
- W2039190904 cites W1988159807 @default.
- W2039190904 cites W1988739252 @default.
- W2039190904 cites W1996018656 @default.
- W2039190904 cites W1996938773 @default.
- W2039190904 cites W2003231667 @default.
- W2039190904 cites W2031543270 @default.
- W2039190904 cites W2043513057 @default.
- W2039190904 cites W2046357518 @default.
- W2039190904 cites W2050399271 @default.
- W2039190904 cites W2062238863 @default.
- W2039190904 cites W2095018715 @default.
- W2039190904 cites W2105339579 @default.
- W2039190904 cites W2108388069 @default.
- W2039190904 cites W2109289094 @default.
- W2039190904 cites W2109906847 @default.
- W2039190904 cites W2111223279 @default.
- W2039190904 cites W2118890415 @default.
- W2039190904 cites W2123757087 @default.
- W2039190904 cites W2124354804 @default.
- W2039190904 cites W2139421749 @default.
- W2039190904 cites W2152195021 @default.
- W2039190904 cites W4243003645 @default.
- W2039190904 cites W4256012320 @default.
- W2039190904 cites W4365787930 @default.
- W2039190904 doi "https://doi.org/10.1016/j.apm.2013.08.009" @default.
- W2039190904 hasPublicationYear "2014" @default.
- W2039190904 type Work @default.
- W2039190904 sameAs 2039190904 @default.
- W2039190904 citedByCount "79" @default.
- W2039190904 countsByYear W20391909042014 @default.
- W2039190904 countsByYear W20391909042015 @default.
- W2039190904 countsByYear W20391909042016 @default.
- W2039190904 countsByYear W20391909042017 @default.
- W2039190904 countsByYear W20391909042018 @default.
- W2039190904 countsByYear W20391909042019 @default.
- W2039190904 countsByYear W20391909042020 @default.
- W2039190904 countsByYear W20391909042021 @default.
- W2039190904 countsByYear W20391909042022 @default.
- W2039190904 countsByYear W20391909042023 @default.
- W2039190904 crossrefType "journal-article" @default.
- W2039190904 hasAuthorship W2039190904A5012513888 @default.
- W2039190904 hasAuthorship W2039190904A5047345684 @default.
- W2039190904 hasAuthorship W2039190904A5050005710 @default.
- W2039190904 hasAuthorship W2039190904A5057762017 @default.
- W2039190904 hasBestOaLocation W20391909041 @default.
- W2039190904 hasConcept C105795698 @default.
- W2039190904 hasConcept C109718341 @default.
- W2039190904 hasConcept C113138325 @default.
- W2039190904 hasConcept C11413529 @default.
- W2039190904 hasConcept C117896860 @default.
- W2039190904 hasConcept C121332964 @default.
- W2039190904 hasConcept C126255220 @default.
- W2039190904 hasConcept C13280743 @default.
- W2039190904 hasConcept C137836250 @default.
- W2039190904 hasConcept C185798385 @default.
- W2039190904 hasConcept C205649164 @default.
- W2039190904 hasConcept C22679943 @default.
- W2039190904 hasConcept C33923547 @default.
- W2039190904 hasConcept C41008148 @default.
- W2039190904 hasConcept C48372109 @default.
- W2039190904 hasConcept C52692508 @default.
- W2039190904 hasConcept C74650414 @default.
- W2039190904 hasConcept C85617194 @default.
- W2039190904 hasConcept C94375191 @default.
- W2039190904 hasConcept C94569963 @default.
- W2039190904 hasConcept C99140742 @default.
- W2039190904 hasConceptScore W2039190904C105795698 @default.
- W2039190904 hasConceptScore W2039190904C109718341 @default.
- W2039190904 hasConceptScore W2039190904C113138325 @default.
- W2039190904 hasConceptScore W2039190904C11413529 @default.
- W2039190904 hasConceptScore W2039190904C117896860 @default.
- W2039190904 hasConceptScore W2039190904C121332964 @default.
- W2039190904 hasConceptScore W2039190904C126255220 @default.
- W2039190904 hasConceptScore W2039190904C13280743 @default.
- W2039190904 hasConceptScore W2039190904C137836250 @default.
- W2039190904 hasConceptScore W2039190904C185798385 @default.
- W2039190904 hasConceptScore W2039190904C205649164 @default.
- W2039190904 hasConceptScore W2039190904C22679943 @default.
- W2039190904 hasConceptScore W2039190904C33923547 @default.
- W2039190904 hasConceptScore W2039190904C41008148 @default.
- W2039190904 hasConceptScore W2039190904C48372109 @default.
- W2039190904 hasConceptScore W2039190904C52692508 @default.
- W2039190904 hasConceptScore W2039190904C74650414 @default.
- W2039190904 hasConceptScore W2039190904C85617194 @default.
- W2039190904 hasConceptScore W2039190904C94375191 @default.
- W2039190904 hasConceptScore W2039190904C94569963 @default.