Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039214527> ?p ?o ?g. }
- W2039214527 endingPage "17" @default.
- W2039214527 startingPage "11" @default.
- W2039214527 abstract "A novel prediction method based on chaos theory, self-adaptive particle swarm optimization (PSO) algorithm, and back propagation artificial neural network (BP ANN) is proposed to predict gas solubility in polymers, hereafter called CSPSO BP ANN. The premature convergence problem of CSPSO BP ANN is overcome by modifying the conventional PSO algorithm using chaos theory and self-adaptive inertia weight factor. Modified PSO algorithm is used to optimize the BP ANN connection weights. Then, the proposed CSPSO BP ANN (two input nodes consisting of temperature and pressure; one output node consisting of gas solubility in polymers) is used to investigate solubility of CO2 in polystyrene, N2 in polystyrene, and CO2 in polypropylene, respectively. Results indicate that CSPSO BP ANN is an effective prediction method for gas solubility in polymers. Moreover, compared with conventional BP ANN and PSO ANN, CSPSO BP ANN shows better performance. The values of average relative deviation (ARD), squared correlation coefficient (R2) and standard deviation (SD) are 0.1275, 0.9963, and 0.0116, respectively. Statistical data demonstrate that CSPSO BP ANN has excellent prediction capability and high accuracy, and the correlation between predicted and experimental data is good." @default.
- W2039214527 created "2016-06-24" @default.
- W2039214527 creator A5000406411 @default.
- W2039214527 creator A5015107909 @default.
- W2039214527 creator A5032129283 @default.
- W2039214527 creator A5061226868 @default.
- W2039214527 creator A5072571656 @default.
- W2039214527 creator A5081567757 @default.
- W2039214527 creator A5086732099 @default.
- W2039214527 date "2013-10-01" @default.
- W2039214527 modified "2023-09-26" @default.
- W2039214527 title "Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory" @default.
- W2039214527 cites W1971867153 @default.
- W2039214527 cites W1974968643 @default.
- W2039214527 cites W1975451996 @default.
- W2039214527 cites W1983130833 @default.
- W2039214527 cites W1987090206 @default.
- W2039214527 cites W1988085592 @default.
- W2039214527 cites W1991481361 @default.
- W2039214527 cites W1992689780 @default.
- W2039214527 cites W1994633109 @default.
- W2039214527 cites W1998245370 @default.
- W2039214527 cites W1998577416 @default.
- W2039214527 cites W2002150621 @default.
- W2039214527 cites W2013556336 @default.
- W2039214527 cites W2016362441 @default.
- W2039214527 cites W2017710570 @default.
- W2039214527 cites W2018439349 @default.
- W2039214527 cites W2019825228 @default.
- W2039214527 cites W2021136490 @default.
- W2039214527 cites W2022205968 @default.
- W2039214527 cites W2031821193 @default.
- W2039214527 cites W2033250181 @default.
- W2039214527 cites W2034104647 @default.
- W2039214527 cites W2038249919 @default.
- W2039214527 cites W2039275551 @default.
- W2039214527 cites W2041729092 @default.
- W2039214527 cites W2043739084 @default.
- W2039214527 cites W2048570605 @default.
- W2039214527 cites W2050076770 @default.
- W2039214527 cites W2052779239 @default.
- W2039214527 cites W2058067655 @default.
- W2039214527 cites W2061871963 @default.
- W2039214527 cites W2062355752 @default.
- W2039214527 cites W2064599931 @default.
- W2039214527 cites W2067650133 @default.
- W2039214527 cites W2075977490 @default.
- W2039214527 cites W2076464471 @default.
- W2039214527 cites W2083474188 @default.
- W2039214527 cites W2088481120 @default.
- W2039214527 cites W2093890504 @default.
- W2039214527 cites W2099526812 @default.
- W2039214527 cites W2116581292 @default.
- W2039214527 cites W2153738293 @default.
- W2039214527 cites W2171370986 @default.
- W2039214527 cites W2313783031 @default.
- W2039214527 cites W2317377969 @default.
- W2039214527 cites W2322495138 @default.
- W2039214527 cites W2333116949 @default.
- W2039214527 cites W2523733449 @default.
- W2039214527 doi "https://doi.org/10.1016/j.fluid.2013.07.017" @default.
- W2039214527 hasPublicationYear "2013" @default.
- W2039214527 type Work @default.
- W2039214527 sameAs 2039214527 @default.
- W2039214527 citedByCount "59" @default.
- W2039214527 countsByYear W20392145272013 @default.
- W2039214527 countsByYear W20392145272014 @default.
- W2039214527 countsByYear W20392145272015 @default.
- W2039214527 countsByYear W20392145272016 @default.
- W2039214527 countsByYear W20392145272017 @default.
- W2039214527 countsByYear W20392145272018 @default.
- W2039214527 countsByYear W20392145272019 @default.
- W2039214527 countsByYear W20392145272020 @default.
- W2039214527 countsByYear W20392145272021 @default.
- W2039214527 countsByYear W20392145272022 @default.
- W2039214527 countsByYear W20392145272023 @default.
- W2039214527 crossrefType "journal-article" @default.
- W2039214527 hasAuthorship W2039214527A5000406411 @default.
- W2039214527 hasAuthorship W2039214527A5015107909 @default.
- W2039214527 hasAuthorship W2039214527A5032129283 @default.
- W2039214527 hasAuthorship W2039214527A5061226868 @default.
- W2039214527 hasAuthorship W2039214527A5072571656 @default.
- W2039214527 hasAuthorship W2039214527A5081567757 @default.
- W2039214527 hasAuthorship W2039214527A5086732099 @default.
- W2039214527 hasConcept C105795698 @default.
- W2039214527 hasConcept C11413529 @default.
- W2039214527 hasConcept C154945302 @default.
- W2039214527 hasConcept C155032097 @default.
- W2039214527 hasConcept C155574463 @default.
- W2039214527 hasConcept C178790620 @default.
- W2039214527 hasConcept C185592680 @default.
- W2039214527 hasConcept C22679943 @default.
- W2039214527 hasConcept C2780092901 @default.
- W2039214527 hasConcept C33923547 @default.
- W2039214527 hasConcept C41008148 @default.
- W2039214527 hasConcept C50644808 @default.
- W2039214527 hasConcept C85617194 @default.
- W2039214527 hasConceptScore W2039214527C105795698 @default.