Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039241908> ?p ?o ?g. }
- W2039241908 endingPage "173" @default.
- W2039241908 startingPage "164" @default.
- W2039241908 abstract "In the previous work, we reported a multitarget Quantitative Structure-Activity Relationship (mt-QSAR) model to predict drug activity against different fungal species. This mt-QSAR allowed us to construct a drug–drug multispecies Complex Network (msCN) to investigate drug–drug similarity (González-Díaz and Prado-Prado, J Comput Chem 2008, 29, 656). However, important methodological points remained unclear, such as follows: (1) the accuracy of the methods when applied to other problems; (2) the effect of the distance type used to construct the msCN; (3) how to perform the inverse procedure to study species–species similarity with multidrug resistance CNs (mdrCN); and (4) the implications and necessary steps to perform a substructural Triadic Census Analysis (TCA) of the msCN. To continue the present series with other important problem, we developed here a mt-QSAR model for more than 700 drugs tested in the literature against different parasites (predicting antiparasitic drugs). The data were processed by Linear Discriminate Analysis (LDA) and the model classifies correctly 93.62% (1160 out of 1239 cases) in training. The model validation was carried out by means of external predicting series; the model classified 573 out of 607, that is, 94.4% of cases. Next, we carried out the first comparative study of the topology of six different drug–drug msCNs based on six different distances such as Euclidean, Chebychev, Manhattan, etc. Furthermore, we compared the selected drug–drug msCN and species–species mdsCN with random networks. We also introduced here the inverse methodology to construct species–species msCN based on a mt-QSAR model. Last, we reported the first substructural analysis of drug–drug msCN using Triadic Census Analysis (TCA) algorithm. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010" @default.
- W2039241908 created "2016-06-24" @default.
- W2039241908 creator A5006634749 @default.
- W2039241908 creator A5013497733 @default.
- W2039241908 creator A5068000809 @default.
- W2039241908 creator A5077102348 @default.
- W2039241908 date "2010-01-15" @default.
- W2039241908 modified "2023-10-18" @default.
- W2039241908 title "Unified QSAR & network-based computational chemistry approach to antimicrobials. II. Multiple distance and triadic census analysis of antiparasitic drugs complex networks" @default.
- W2039241908 cites W1493682653 @default.
- W2039241908 cites W1525985997 @default.
- W2039241908 cites W1563816212 @default.
- W2039241908 cites W1572272766 @default.
- W2039241908 cites W1963516639 @default.
- W2039241908 cites W1965345429 @default.
- W2039241908 cites W1974444469 @default.
- W2039241908 cites W1981532526 @default.
- W2039241908 cites W1981574821 @default.
- W2039241908 cites W1982943381 @default.
- W2039241908 cites W1990186735 @default.
- W2039241908 cites W1999246286 @default.
- W2039241908 cites W2001515828 @default.
- W2039241908 cites W2005281435 @default.
- W2039241908 cites W2008620264 @default.
- W2039241908 cites W2013333835 @default.
- W2039241908 cites W2042368657 @default.
- W2039241908 cites W2045568930 @default.
- W2039241908 cites W2052191939 @default.
- W2039241908 cites W2059449978 @default.
- W2039241908 cites W2065753888 @default.
- W2039241908 cites W2068683840 @default.
- W2039241908 cites W2069781087 @default.
- W2039241908 cites W2082577020 @default.
- W2039241908 cites W2087138700 @default.
- W2039241908 cites W2089804190 @default.
- W2039241908 cites W2093685423 @default.
- W2039241908 cites W2099757084 @default.
- W2039241908 cites W2107019398 @default.
- W2039241908 cites W2109034827 @default.
- W2039241908 cites W2112947018 @default.
- W2039241908 cites W2113485564 @default.
- W2039241908 cites W2116623522 @default.
- W2039241908 cites W2121604817 @default.
- W2039241908 cites W2123828448 @default.
- W2039241908 cites W2124994832 @default.
- W2039241908 cites W2125725243 @default.
- W2039241908 cites W2128566472 @default.
- W2039241908 cites W2133263603 @default.
- W2039241908 cites W2134587691 @default.
- W2039241908 cites W2137462664 @default.
- W2039241908 cites W2146213193 @default.
- W2039241908 cites W2152446532 @default.
- W2039241908 cites W2152495216 @default.
- W2039241908 cites W2166007234 @default.
- W2039241908 cites W2166465687 @default.
- W2039241908 cites W2179179029 @default.
- W2039241908 cites W2212567822 @default.
- W2039241908 cites W2329686304 @default.
- W2039241908 cites W2766967542 @default.
- W2039241908 cites W4253895441 @default.
- W2039241908 doi "https://doi.org/10.1002/jcc.21292" @default.
- W2039241908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19421992" @default.
- W2039241908 hasPublicationYear "2010" @default.
- W2039241908 type Work @default.
- W2039241908 sameAs 2039241908 @default.
- W2039241908 citedByCount "32" @default.
- W2039241908 countsByYear W20392419082012 @default.
- W2039241908 countsByYear W20392419082013 @default.
- W2039241908 countsByYear W20392419082015 @default.
- W2039241908 countsByYear W20392419082016 @default.
- W2039241908 countsByYear W20392419082017 @default.
- W2039241908 countsByYear W20392419082018 @default.
- W2039241908 countsByYear W20392419082019 @default.
- W2039241908 countsByYear W20392419082020 @default.
- W2039241908 countsByYear W20392419082021 @default.
- W2039241908 crossrefType "journal-article" @default.
- W2039241908 hasAuthorship W2039241908A5006634749 @default.
- W2039241908 hasAuthorship W2039241908A5013497733 @default.
- W2039241908 hasAuthorship W2039241908A5068000809 @default.
- W2039241908 hasAuthorship W2039241908A5077102348 @default.
- W2039241908 hasConcept C103278499 @default.
- W2039241908 hasConcept C115961682 @default.
- W2039241908 hasConcept C119857082 @default.
- W2039241908 hasConcept C142724271 @default.
- W2039241908 hasConcept C154945302 @default.
- W2039241908 hasConcept C164126121 @default.
- W2039241908 hasConcept C199360897 @default.
- W2039241908 hasConcept C2780035454 @default.
- W2039241908 hasConcept C2780801425 @default.
- W2039241908 hasConcept C2781421772 @default.
- W2039241908 hasConcept C41008148 @default.
- W2039241908 hasConcept C70721500 @default.
- W2039241908 hasConcept C71924100 @default.
- W2039241908 hasConcept C86803240 @default.
- W2039241908 hasConcept C98274493 @default.
- W2039241908 hasConceptScore W2039241908C103278499 @default.
- W2039241908 hasConceptScore W2039241908C115961682 @default.
- W2039241908 hasConceptScore W2039241908C119857082 @default.