Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039268521> ?p ?o ?g. }
- W2039268521 endingPage "164" @default.
- W2039268521 startingPage "164" @default.
- W2039268521 abstract "In order to model the dynamics of a walking beam reheating furnace, a multi-input multi-output recurrent neural network (RNN) is constructed based on a sequential learning algorithm. The learning algorithm employs growing and pruning criteria based on the concept of significance of hidden neurons to achieve a compact network. An unscented Kalman filter (UKF) is used to improve the learning accuracy by estimating the parameters of the RNN from incomplete and noisy measurements. Unlike existing methods, this one uses a vector instead of a scalar to denote the width of the allocated neuron so as to precisely represent the probability distributions of different input variables. The effectiveness of the RNN combined with the UKF is compared with that of the RNN with an extended Kalman filter (EKF), and the results show that the former estimates the temperatures of zones of the furnace with a higher precision than the latter." @default.
- W2039268521 created "2016-06-24" @default.
- W2039268521 creator A5074710425 @default.
- W2039268521 creator A5075684181 @default.
- W2039268521 creator A5083668446 @default.
- W2039268521 date "2010-01-01" @default.
- W2039268521 modified "2023-09-25" @default.
- W2039268521 title "Recurrent neural network model for reheating furnace based on sequential learning with unscented Kalman filter" @default.
- W2039268521 cites W1965198822 @default.
- W2039268521 cites W1969705022 @default.
- W2039268521 cites W1971083752 @default.
- W2039268521 cites W1988141348 @default.
- W2039268521 cites W2012444239 @default.
- W2039268521 cites W2019453139 @default.
- W2039268521 cites W2020713802 @default.
- W2039268521 cites W2020934227 @default.
- W2039268521 cites W2031600073 @default.
- W2039268521 cites W2059723642 @default.
- W2039268521 cites W2091207341 @default.
- W2039268521 cites W2099244771 @default.
- W2039268521 cites W2111986387 @default.
- W2039268521 cites W2114865067 @default.
- W2039268521 cites W2116119284 @default.
- W2039268521 cites W2124295615 @default.
- W2039268521 cites W2130007695 @default.
- W2039268521 cites W2133539287 @default.
- W2039268521 cites W2138759044 @default.
- W2039268521 cites W2162397227 @default.
- W2039268521 cites W2171573398 @default.
- W2039268521 cites W3151441109 @default.
- W2039268521 doi "https://doi.org/10.1504/ijamechs.2010.033041" @default.
- W2039268521 hasPublicationYear "2010" @default.
- W2039268521 type Work @default.
- W2039268521 sameAs 2039268521 @default.
- W2039268521 citedByCount "0" @default.
- W2039268521 crossrefType "journal-article" @default.
- W2039268521 hasAuthorship W2039268521A5074710425 @default.
- W2039268521 hasAuthorship W2039268521A5075684181 @default.
- W2039268521 hasAuthorship W2039268521A5083668446 @default.
- W2039268521 hasConcept C108010975 @default.
- W2039268521 hasConcept C11413529 @default.
- W2039268521 hasConcept C139399703 @default.
- W2039268521 hasConcept C147168706 @default.
- W2039268521 hasConcept C154945302 @default.
- W2039268521 hasConcept C157286648 @default.
- W2039268521 hasConcept C206833254 @default.
- W2039268521 hasConcept C2524010 @default.
- W2039268521 hasConcept C2775924081 @default.
- W2039268521 hasConcept C33923547 @default.
- W2039268521 hasConcept C41008148 @default.
- W2039268521 hasConcept C47446073 @default.
- W2039268521 hasConcept C50644808 @default.
- W2039268521 hasConcept C57691317 @default.
- W2039268521 hasConcept C6557445 @default.
- W2039268521 hasConcept C79334102 @default.
- W2039268521 hasConcept C86803240 @default.
- W2039268521 hasConceptScore W2039268521C108010975 @default.
- W2039268521 hasConceptScore W2039268521C11413529 @default.
- W2039268521 hasConceptScore W2039268521C139399703 @default.
- W2039268521 hasConceptScore W2039268521C147168706 @default.
- W2039268521 hasConceptScore W2039268521C154945302 @default.
- W2039268521 hasConceptScore W2039268521C157286648 @default.
- W2039268521 hasConceptScore W2039268521C206833254 @default.
- W2039268521 hasConceptScore W2039268521C2524010 @default.
- W2039268521 hasConceptScore W2039268521C2775924081 @default.
- W2039268521 hasConceptScore W2039268521C33923547 @default.
- W2039268521 hasConceptScore W2039268521C41008148 @default.
- W2039268521 hasConceptScore W2039268521C47446073 @default.
- W2039268521 hasConceptScore W2039268521C50644808 @default.
- W2039268521 hasConceptScore W2039268521C57691317 @default.
- W2039268521 hasConceptScore W2039268521C6557445 @default.
- W2039268521 hasConceptScore W2039268521C79334102 @default.
- W2039268521 hasConceptScore W2039268521C86803240 @default.
- W2039268521 hasIssue "3" @default.
- W2039268521 hasLocation W20392685211 @default.
- W2039268521 hasOpenAccess W2039268521 @default.
- W2039268521 hasPrimaryLocation W20392685211 @default.
- W2039268521 hasRelatedWork W2098920540 @default.
- W2039268521 hasRelatedWork W2100729928 @default.
- W2039268521 hasRelatedWork W2112492235 @default.
- W2039268521 hasRelatedWork W2149655668 @default.
- W2039268521 hasRelatedWork W2181765516 @default.
- W2039268521 hasRelatedWork W2181970679 @default.
- W2039268521 hasRelatedWork W2366737900 @default.
- W2039268521 hasRelatedWork W2518034794 @default.
- W2039268521 hasRelatedWork W2753552761 @default.
- W2039268521 hasRelatedWork W2903673904 @default.
- W2039268521 hasRelatedWork W2913215714 @default.
- W2039268521 hasRelatedWork W2937737764 @default.
- W2039268521 hasRelatedWork W2965167165 @default.
- W2039268521 hasRelatedWork W2966325998 @default.
- W2039268521 hasRelatedWork W3043899666 @default.
- W2039268521 hasRelatedWork W3209902975 @default.
- W2039268521 hasRelatedWork W3211077159 @default.
- W2039268521 hasRelatedWork W68816653 @default.
- W2039268521 hasRelatedWork W2186825669 @default.
- W2039268521 hasRelatedWork W2187219026 @default.
- W2039268521 hasVolume "2" @default.