Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039463669> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2039463669 endingPage "190" @default.
- W2039463669 startingPage "182" @default.
- W2039463669 abstract "Acid rock drainage (ARD) is a major pollution problem globally that has adversely impacted the environment. Identification and quantification of uncertainties are integral parts of ARD assessment and risk mitigation, however previous studies on predicting ARD drainage chemistry have not fully addressed issues of uncertainties. In this study, artificial neural networks (ANN) and support vector machine (SVM) are used for the prediction of ARD drainage chemistry and their predictive uncertainties are quantified using probability bounds analysis. Furthermore, the predictions of ANN and SVM are integrated using four aggregation methods to improve their individual predictions. The results of this study showed that ANN performed better than SVM in enveloping the observed concentrations. In addition, integrating the prediction of ANN and SVM using the aggregation methods improved the predictions of individual techniques." @default.
- W2039463669 created "2016-06-24" @default.
- W2039463669 creator A5017014588 @default.
- W2039463669 creator A5021400604 @default.
- W2039463669 creator A5061332618 @default.
- W2039463669 creator A5086998100 @default.
- W2039463669 date "2014-08-01" @default.
- W2039463669 modified "2023-09-27" @default.
- W2039463669 title "Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: A probability bounds approach" @default.
- W2039463669 cites W160971523 @default.
- W2039463669 cites W1974711212 @default.
- W2039463669 cites W1997627237 @default.
- W2039463669 cites W2009327068 @default.
- W2039463669 cites W2046688814 @default.
- W2039463669 cites W2051272551 @default.
- W2039463669 cites W2077238186 @default.
- W2039463669 cites W2082484980 @default.
- W2039463669 cites W2086465016 @default.
- W2039463669 cites W2090489120 @default.
- W2039463669 cites W2090972948 @default.
- W2039463669 cites W2096849238 @default.
- W2039463669 cites W2103082150 @default.
- W2039463669 cites W2129504210 @default.
- W2039463669 cites W2165700458 @default.
- W2039463669 doi "https://doi.org/10.1016/j.scitotenv.2014.04.125" @default.
- W2039463669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24852616" @default.
- W2039463669 hasPublicationYear "2014" @default.
- W2039463669 type Work @default.
- W2039463669 sameAs 2039463669 @default.
- W2039463669 citedByCount "13" @default.
- W2039463669 countsByYear W20394636692015 @default.
- W2039463669 countsByYear W20394636692016 @default.
- W2039463669 countsByYear W20394636692017 @default.
- W2039463669 countsByYear W20394636692019 @default.
- W2039463669 countsByYear W20394636692020 @default.
- W2039463669 countsByYear W20394636692021 @default.
- W2039463669 countsByYear W20394636692022 @default.
- W2039463669 countsByYear W20394636692023 @default.
- W2039463669 crossrefType "journal-article" @default.
- W2039463669 hasAuthorship W2039463669A5017014588 @default.
- W2039463669 hasAuthorship W2039463669A5021400604 @default.
- W2039463669 hasAuthorship W2039463669A5061332618 @default.
- W2039463669 hasAuthorship W2039463669A5086998100 @default.
- W2039463669 hasConcept C116834253 @default.
- W2039463669 hasConcept C119857082 @default.
- W2039463669 hasConcept C12267149 @default.
- W2039463669 hasConcept C154945302 @default.
- W2039463669 hasConcept C18903297 @default.
- W2039463669 hasConcept C41008148 @default.
- W2039463669 hasConcept C50644808 @default.
- W2039463669 hasConcept C67592535 @default.
- W2039463669 hasConcept C86803240 @default.
- W2039463669 hasConceptScore W2039463669C116834253 @default.
- W2039463669 hasConceptScore W2039463669C119857082 @default.
- W2039463669 hasConceptScore W2039463669C12267149 @default.
- W2039463669 hasConceptScore W2039463669C154945302 @default.
- W2039463669 hasConceptScore W2039463669C18903297 @default.
- W2039463669 hasConceptScore W2039463669C41008148 @default.
- W2039463669 hasConceptScore W2039463669C50644808 @default.
- W2039463669 hasConceptScore W2039463669C67592535 @default.
- W2039463669 hasConceptScore W2039463669C86803240 @default.
- W2039463669 hasLocation W20394636691 @default.
- W2039463669 hasLocation W20394636692 @default.
- W2039463669 hasOpenAccess W2039463669 @default.
- W2039463669 hasPrimaryLocation W20394636691 @default.
- W2039463669 hasRelatedWork W1996541855 @default.
- W2039463669 hasRelatedWork W2355927362 @default.
- W2039463669 hasRelatedWork W2961085424 @default.
- W2039463669 hasRelatedWork W2992977501 @default.
- W2039463669 hasRelatedWork W3195168932 @default.
- W2039463669 hasRelatedWork W4285260836 @default.
- W2039463669 hasRelatedWork W4286629047 @default.
- W2039463669 hasRelatedWork W4306321456 @default.
- W2039463669 hasRelatedWork W4306674287 @default.
- W2039463669 hasRelatedWork W4224009465 @default.
- W2039463669 hasVolume "490" @default.
- W2039463669 isParatext "false" @default.
- W2039463669 isRetracted "false" @default.
- W2039463669 magId "2039463669" @default.
- W2039463669 workType "article" @default.