Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039716701> ?p ?o ?g. }
- W2039716701 endingPage "232" @default.
- W2039716701 startingPage "220" @default.
- W2039716701 abstract "Surrogate models – simple functional approximations of complex models – can facilitate engineering analysis of complicated systems by greatly reducing computational expense. The construction of a surrogate model requires evaluation of the original model to gather the data necessary for building the surrogate. Sequential sampling procedures are proposed for determining and minimizing the required number of samples for efficient global surrogate construction. In this paper, two new adaptive sampling algorithms – one purely adaptive and one combining adaptive and space-filling characteristics – are proposed and compared to a purely space-filling approach. Our analysis suggests a mixed adaptive sampling approach for constructing surrogates for systems where the behavior of the underlying model is unknown. Results of the case study, optimization of carbon dioxide capture process with aqueous amines, revealed that the mixed adaptive sampling algorithm may reduce the required sample size by up to 40% compared to a purely space-filling design." @default.
- W2039716701 created "2016-06-24" @default.
- W2039716701 creator A5023427162 @default.
- W2039716701 creator A5031711223 @default.
- W2039716701 date "2014-09-01" @default.
- W2039716701 modified "2023-10-16" @default.
- W2039716701 title "Adaptive sequential sampling for surrogate model generation with artificial neural networks" @default.
- W2039716701 cites W102043801 @default.
- W2039716701 cites W1510052597 @default.
- W2039716701 cites W1965724147 @default.
- W2039716701 cites W1982434302 @default.
- W2039716701 cites W1984753492 @default.
- W2039716701 cites W1989245622 @default.
- W2039716701 cites W2010989015 @default.
- W2039716701 cites W2028070629 @default.
- W2039716701 cites W2033509028 @default.
- W2039716701 cites W2038568271 @default.
- W2039716701 cites W2043606981 @default.
- W2039716701 cites W2065515547 @default.
- W2039716701 cites W2074188845 @default.
- W2039716701 cites W2091594101 @default.
- W2039716701 cites W2093229042 @default.
- W2039716701 cites W2121760303 @default.
- W2039716701 cites W2134378426 @default.
- W2039716701 cites W2141562620 @default.
- W2039716701 cites W2145475762 @default.
- W2039716701 cites W2162424869 @default.
- W2039716701 cites W2168426915 @default.
- W2039716701 cites W2169092059 @default.
- W2039716701 cites W2327252761 @default.
- W2039716701 cites W3122455945 @default.
- W2039716701 doi "https://doi.org/10.1016/j.compchemeng.2014.05.021" @default.
- W2039716701 hasPublicationYear "2014" @default.
- W2039716701 type Work @default.
- W2039716701 sameAs 2039716701 @default.
- W2039716701 citedByCount "183" @default.
- W2039716701 countsByYear W20397167012015 @default.
- W2039716701 countsByYear W20397167012016 @default.
- W2039716701 countsByYear W20397167012017 @default.
- W2039716701 countsByYear W20397167012018 @default.
- W2039716701 countsByYear W20397167012019 @default.
- W2039716701 countsByYear W20397167012020 @default.
- W2039716701 countsByYear W20397167012021 @default.
- W2039716701 countsByYear W20397167012022 @default.
- W2039716701 countsByYear W20397167012023 @default.
- W2039716701 crossrefType "journal-article" @default.
- W2039716701 hasAuthorship W2039716701A5023427162 @default.
- W2039716701 hasAuthorship W2039716701A5031711223 @default.
- W2039716701 hasConcept C105795698 @default.
- W2039716701 hasConcept C106131492 @default.
- W2039716701 hasConcept C111919701 @default.
- W2039716701 hasConcept C11413529 @default.
- W2039716701 hasConcept C119857082 @default.
- W2039716701 hasConcept C126255220 @default.
- W2039716701 hasConcept C131675550 @default.
- W2039716701 hasConcept C140779682 @default.
- W2039716701 hasConcept C154945302 @default.
- W2039716701 hasConcept C19499675 @default.
- W2039716701 hasConcept C2781395549 @default.
- W2039716701 hasConcept C31972630 @default.
- W2039716701 hasConcept C33923547 @default.
- W2039716701 hasConcept C41008148 @default.
- W2039716701 hasConcept C50644808 @default.
- W2039716701 hasConcept C98045186 @default.
- W2039716701 hasConceptScore W2039716701C105795698 @default.
- W2039716701 hasConceptScore W2039716701C106131492 @default.
- W2039716701 hasConceptScore W2039716701C111919701 @default.
- W2039716701 hasConceptScore W2039716701C11413529 @default.
- W2039716701 hasConceptScore W2039716701C119857082 @default.
- W2039716701 hasConceptScore W2039716701C126255220 @default.
- W2039716701 hasConceptScore W2039716701C131675550 @default.
- W2039716701 hasConceptScore W2039716701C140779682 @default.
- W2039716701 hasConceptScore W2039716701C154945302 @default.
- W2039716701 hasConceptScore W2039716701C19499675 @default.
- W2039716701 hasConceptScore W2039716701C2781395549 @default.
- W2039716701 hasConceptScore W2039716701C31972630 @default.
- W2039716701 hasConceptScore W2039716701C33923547 @default.
- W2039716701 hasConceptScore W2039716701C41008148 @default.
- W2039716701 hasConceptScore W2039716701C50644808 @default.
- W2039716701 hasConceptScore W2039716701C98045186 @default.
- W2039716701 hasFunder F4320309552 @default.
- W2039716701 hasLocation W20397167011 @default.
- W2039716701 hasOpenAccess W2039716701 @default.
- W2039716701 hasPrimaryLocation W20397167011 @default.
- W2039716701 hasRelatedWork W138014004 @default.
- W2039716701 hasRelatedWork W1582396021 @default.
- W2039716701 hasRelatedWork W1991602789 @default.
- W2039716701 hasRelatedWork W2038693912 @default.
- W2039716701 hasRelatedWork W2039716701 @default.
- W2039716701 hasRelatedWork W2075598034 @default.
- W2039716701 hasRelatedWork W3042035870 @default.
- W2039716701 hasRelatedWork W312558119 @default.
- W2039716701 hasRelatedWork W4210985407 @default.
- W2039716701 hasRelatedWork W1829869244 @default.
- W2039716701 hasVolume "68" @default.
- W2039716701 isParatext "false" @default.
- W2039716701 isRetracted "false" @default.
- W2039716701 magId "2039716701" @default.