Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039981793> ?p ?o ?g. }
- W2039981793 endingPage "10430" @default.
- W2039981793 startingPage "10419" @default.
- W2039981793 abstract "The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide. The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide." @default.
- W2039981793 created "2016-06-24" @default.
- W2039981793 creator A5022841391 @default.
- W2039981793 creator A5030897558 @default.
- W2039981793 creator A5040554210 @default.
- W2039981793 creator A5040857627 @default.
- W2039981793 creator A5055121704 @default.
- W2039981793 creator A5068341520 @default.
- W2039981793 creator A5071839776 @default.
- W2039981793 date "2014-04-01" @default.
- W2039981793 modified "2023-09-27" @default.
- W2039981793 title "The Mechanism of Membrane Disruption by Cytotoxic Amyloid Oligomers Formed by Prion Protein(106–126) Is Dependent on Bilayer Composition" @default.
- W2039981793 cites W1527671059 @default.
- W2039981793 cites W1538423819 @default.
- W2039981793 cites W1539168006 @default.
- W2039981793 cites W1967460064 @default.
- W2039981793 cites W1972409470 @default.
- W2039981793 cites W1974285362 @default.
- W2039981793 cites W1977471961 @default.
- W2039981793 cites W1981458288 @default.
- W2039981793 cites W1982077438 @default.
- W2039981793 cites W1982625489 @default.
- W2039981793 cites W1986240789 @default.
- W2039981793 cites W1991919068 @default.
- W2039981793 cites W1994274386 @default.
- W2039981793 cites W1994726986 @default.
- W2039981793 cites W2000394086 @default.
- W2039981793 cites W2005313280 @default.
- W2039981793 cites W2007242005 @default.
- W2039981793 cites W2009559464 @default.
- W2039981793 cites W2011771839 @default.
- W2039981793 cites W2013144726 @default.
- W2039981793 cites W2013679718 @default.
- W2039981793 cites W2014988440 @default.
- W2039981793 cites W2015149444 @default.
- W2039981793 cites W2016660810 @default.
- W2039981793 cites W2016818803 @default.
- W2039981793 cites W2019455762 @default.
- W2039981793 cites W2026534774 @default.
- W2039981793 cites W2026672560 @default.
- W2039981793 cites W2028476667 @default.
- W2039981793 cites W2029422688 @default.
- W2039981793 cites W2032920422 @default.
- W2039981793 cites W2037935716 @default.
- W2039981793 cites W2038438971 @default.
- W2039981793 cites W2039706105 @default.
- W2039981793 cites W2053892220 @default.
- W2039981793 cites W2054086227 @default.
- W2039981793 cites W2057001256 @default.
- W2039981793 cites W2057653477 @default.
- W2039981793 cites W2058368188 @default.
- W2039981793 cites W2059725331 @default.
- W2039981793 cites W2060215277 @default.
- W2039981793 cites W2064919700 @default.
- W2039981793 cites W2067464601 @default.
- W2039981793 cites W2068810698 @default.
- W2039981793 cites W2069855944 @default.
- W2039981793 cites W2070162626 @default.
- W2039981793 cites W2071742401 @default.
- W2039981793 cites W2071982060 @default.
- W2039981793 cites W2072933784 @default.
- W2039981793 cites W2073699804 @default.
- W2039981793 cites W2075503719 @default.
- W2039981793 cites W2076215391 @default.
- W2039981793 cites W2076515757 @default.
- W2039981793 cites W2076970404 @default.
- W2039981793 cites W2077569857 @default.
- W2039981793 cites W2080409041 @default.
- W2039981793 cites W2084533538 @default.
- W2039981793 cites W2085808424 @default.
- W2039981793 cites W2086068665 @default.
- W2039981793 cites W2088338828 @default.
- W2039981793 cites W2094525223 @default.
- W2039981793 cites W2100817247 @default.
- W2039981793 cites W2102453092 @default.
- W2039981793 cites W2102632887 @default.
- W2039981793 cites W2115792449 @default.
- W2039981793 cites W2119176639 @default.
- W2039981793 cites W2121963977 @default.
- W2039981793 cites W2134909516 @default.
- W2039981793 cites W2136455205 @default.
- W2039981793 cites W2139448382 @default.
- W2039981793 cites W2146129321 @default.
- W2039981793 cites W2156215695 @default.
- W2039981793 cites W2156478040 @default.
- W2039981793 cites W2158482458 @default.
- W2039981793 cites W2160679445 @default.
- W2039981793 cites W2160780417 @default.
- W2039981793 cites W2161456325 @default.
- W2039981793 cites W2165021720 @default.
- W2039981793 cites W2169101094 @default.
- W2039981793 cites W2171909837 @default.
- W2039981793 cites W2315817688 @default.
- W2039981793 doi "https://doi.org/10.1074/jbc.m113.515866" @default.
- W2039981793 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4036164" @default.
- W2039981793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24554723" @default.
- W2039981793 hasPublicationYear "2014" @default.
- W2039981793 type Work @default.