Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040166263> ?p ?o ?g. }
- W2040166263 endingPage "1880" @default.
- W2040166263 startingPage "1821" @default.
- W2040166263 abstract "Tries (from retrieval) are one of the most popular data structures on words. They are pertinent to the (internal) structure of stored words and several splitting procedures used in diverse contexts. The profile of a trie is a parameter that represents the number of nodes (either internal or external) with the same distance from the root. It is a function of the number of strings stored in a trie and the distance from the root. Several, if not all, trie parameters such as height, size, depth, shortest path, and fill-up level can be uniformly analyzed through the (external and internal) profiles. Although profiles represent one of the most fundamental parameters of tries, they have hardly been studied in the past. The analysis of profiles is surprisingly arduous, but once it is carried out it reveals unusually intriguing and interesting behavior. We present a detailed study of the distribution of the profiles in a trie built over random strings generated by a memoryless source. We first derive recurrences satisfied by the expected profiles and solve them asymptotically for all possible ranges of the distance from the root. It appears that profiles of tries exhibit several fascinating phenomena. When moving from the root to the leaves of a trie, the growth of the expected profiles varies. Near the root, the external profiles tend to zero at an exponential rate, and then the rate gradually rises to being logarithmic; the external profiles then abruptly tend to infinity, first logarithmically and then polynomially; they then tend polynomially to zero again. Furthermore, the expected profiles of asymmetric tries are oscillating in a range where profiles grow polynomially, while symmetric tries are nonoscillating, in contrast to most shape parameters of random tries studied previously. Such a periodic behavior for asymmetric tries implies that the depth satisfies a central limit theorem but not a local limit theorem of the usual form. Also the widest levels in symmetric tries contain a linear number of nodes, differing from the order $n/sqrt{log n}$ for asymmetric tries, n being the size of the trees. Finally, it is observed that profiles satisfy central limit theorems when the variance goes unbounded, while near the height they are distributed according to Poisson laws. As a consequence of these results we find typical behaviors of the height, shortest path, fill-up level, and depth. These results are derived here by methods of analytic algorithmics such as generating functions, Mellin transform, Poissonization and de-Poissonization, the saddle-point method, singularity analysis, and uniform asymptotic analysis." @default.
- W2040166263 created "2016-06-24" @default.
- W2040166263 creator A5003984705 @default.
- W2040166263 creator A5019536160 @default.
- W2040166263 creator A5039355009 @default.
- W2040166263 creator A5071993530 @default.
- W2040166263 date "2009-01-01" @default.
- W2040166263 modified "2023-10-04" @default.
- W2040166263 title "Profiles of Tries" @default.
- W2040166263 cites W1522003137 @default.
- W2040166263 cites W1593096882 @default.
- W2040166263 cites W1603682988 @default.
- W2040166263 cites W1965516463 @default.
- W2040166263 cites W1966082969 @default.
- W2040166263 cites W1968801809 @default.
- W2040166263 cites W1977970493 @default.
- W2040166263 cites W1985558449 @default.
- W2040166263 cites W1993618625 @default.
- W2040166263 cites W2005721481 @default.
- W2040166263 cites W2008188815 @default.
- W2040166263 cites W2010595692 @default.
- W2040166263 cites W2018795275 @default.
- W2040166263 cites W2020389755 @default.
- W2040166263 cites W2022718961 @default.
- W2040166263 cites W2023807842 @default.
- W2040166263 cites W2028802241 @default.
- W2040166263 cites W2028923288 @default.
- W2040166263 cites W2034665194 @default.
- W2040166263 cites W2035490304 @default.
- W2040166263 cites W2038681797 @default.
- W2040166263 cites W2042464140 @default.
- W2040166263 cites W2045549133 @default.
- W2040166263 cites W2048294592 @default.
- W2040166263 cites W2051008728 @default.
- W2040166263 cites W2052638374 @default.
- W2040166263 cites W2053183761 @default.
- W2040166263 cites W2067215545 @default.
- W2040166263 cites W2068858638 @default.
- W2040166263 cites W2077705073 @default.
- W2040166263 cites W2079108315 @default.
- W2040166263 cites W2079997965 @default.
- W2040166263 cites W2080028582 @default.
- W2040166263 cites W2084532840 @default.
- W2040166263 cites W2085901659 @default.
- W2040166263 cites W2088116326 @default.
- W2040166263 cites W2088809895 @default.
- W2040166263 cites W2091851562 @default.
- W2040166263 cites W2111880296 @default.
- W2040166263 cites W2120393359 @default.
- W2040166263 cites W2123680541 @default.
- W2040166263 cites W2127345195 @default.
- W2040166263 cites W2134926765 @default.
- W2040166263 cites W2137921216 @default.
- W2040166263 cites W2139886628 @default.
- W2040166263 cites W2140003446 @default.
- W2040166263 cites W2160894444 @default.
- W2040166263 cites W2161613033 @default.
- W2040166263 cites W2337480916 @default.
- W2040166263 cites W3099976229 @default.
- W2040166263 cites W4256254287 @default.
- W2040166263 cites W2014731305 @default.
- W2040166263 cites W2150840831 @default.
- W2040166263 doi "https://doi.org/10.1137/070685531" @default.
- W2040166263 hasPublicationYear "2009" @default.
- W2040166263 type Work @default.
- W2040166263 sameAs 2040166263 @default.
- W2040166263 citedByCount "40" @default.
- W2040166263 countsByYear W20401662632012 @default.
- W2040166263 countsByYear W20401662632013 @default.
- W2040166263 countsByYear W20401662632014 @default.
- W2040166263 countsByYear W20401662632015 @default.
- W2040166263 countsByYear W20401662632016 @default.
- W2040166263 countsByYear W20401662632018 @default.
- W2040166263 countsByYear W20401662632020 @default.
- W2040166263 countsByYear W20401662632022 @default.
- W2040166263 crossrefType "journal-article" @default.
- W2040166263 hasAuthorship W2040166263A5003984705 @default.
- W2040166263 hasAuthorship W2040166263A5019536160 @default.
- W2040166263 hasAuthorship W2040166263A5039355009 @default.
- W2040166263 hasAuthorship W2040166263A5071993530 @default.
- W2040166263 hasConcept C113174947 @default.
- W2040166263 hasConcept C114614502 @default.
- W2040166263 hasConcept C129045301 @default.
- W2040166263 hasConcept C134306372 @default.
- W2040166263 hasConcept C138885662 @default.
- W2040166263 hasConcept C14036430 @default.
- W2040166263 hasConcept C151376022 @default.
- W2040166263 hasConcept C162319229 @default.
- W2040166263 hasConcept C171078966 @default.
- W2040166263 hasConcept C190290938 @default.
- W2040166263 hasConcept C199360897 @default.
- W2040166263 hasConcept C2777735758 @default.
- W2040166263 hasConcept C2780813799 @default.
- W2040166263 hasConcept C31258907 @default.
- W2040166263 hasConcept C33923547 @default.
- W2040166263 hasConcept C39927690 @default.
- W2040166263 hasConcept C41008148 @default.
- W2040166263 hasConcept C41895202 @default.