Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040201907> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2040201907 endingPage "80" @default.
- W2040201907 startingPage "51" @default.
- W2040201907 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a field, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Omega> <mml:semantics> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:annotation encoding=application/x-tex>Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a universal domain over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f colon upper X right-arrow upper S> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>f:X rightarrow S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a dominant morphism defined over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from a smooth projective variety <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a smooth projective variety <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=application/x-tex>S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=less-than-or-equal-to 2> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>leq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the general fibre of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f Subscript normal upper Omega> <mml:semantics> <mml:msub> <mml:mi>f</mml:mi> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>f_Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has trivial Chow group of zero-cycles. For example, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> could be the total space of a two-dimensional family of varieties whose general member is rationally connected. Suppose that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=less-than-or-equal-to 4> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>leq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we prove that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a self-dual Murre decomposition, i.e., that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a self-dual Chow-Künneth decomposition which satisfies Murre’s conjectures (B) and (D). Moreover, we prove that the motivic Lefschetz conjecture holds for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and hence so does the Lefschetz standard conjecture. We also give new examples of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=3> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=application/x-tex>3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-folds of general type which are Kimura finite dimensional, new examples of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=4> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=application/x-tex>4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-folds of general type having a self-dual Murre decomposition, as well as new examples of varieties with finite degree three unramified cohomology." @default.
- W2040201907 created "2016-06-24" @default.
- W2040201907 creator A5089099792 @default.
- W2040201907 date "2014-01-27" @default.
- W2040201907 modified "2023-09-23" @default.
- W2040201907 title "Chow–Künneth decomposition for 3- and 4-folds fibred by varieties with trivial Chow group of zero-cycles" @default.
- W2040201907 cites W1538392730 @default.
- W2040201907 cites W1552738513 @default.
- W2040201907 cites W1982651723 @default.
- W2040201907 cites W2032820212 @default.
- W2040201907 cites W2042881579 @default.
- W2040201907 cites W2045651093 @default.
- W2040201907 cites W2061952059 @default.
- W2040201907 cites W2067543655 @default.
- W2040201907 cites W2138008143 @default.
- W2040201907 cites W2892293079 @default.
- W2040201907 cites W2962970109 @default.
- W2040201907 cites W2964118933 @default.
- W2040201907 cites W3102224212 @default.
- W2040201907 cites W4230760432 @default.
- W2040201907 cites W4231216667 @default.
- W2040201907 cites W4235437722 @default.
- W2040201907 cites W4250611183 @default.
- W2040201907 doi "https://doi.org/10.1090/s1056-3911-2014-00616-0" @default.
- W2040201907 hasPublicationYear "2014" @default.
- W2040201907 type Work @default.
- W2040201907 sameAs 2040201907 @default.
- W2040201907 citedByCount "23" @default.
- W2040201907 countsByYear W20402019072013 @default.
- W2040201907 countsByYear W20402019072015 @default.
- W2040201907 countsByYear W20402019072016 @default.
- W2040201907 countsByYear W20402019072017 @default.
- W2040201907 countsByYear W20402019072018 @default.
- W2040201907 countsByYear W20402019072019 @default.
- W2040201907 countsByYear W20402019072020 @default.
- W2040201907 countsByYear W20402019072021 @default.
- W2040201907 crossrefType "journal-article" @default.
- W2040201907 hasAuthorship W2040201907A5089099792 @default.
- W2040201907 hasBestOaLocation W20402019071 @default.
- W2040201907 hasConcept C11413529 @default.
- W2040201907 hasConcept C154945302 @default.
- W2040201907 hasConcept C2776321320 @default.
- W2040201907 hasConcept C33923547 @default.
- W2040201907 hasConcept C41008148 @default.
- W2040201907 hasConceptScore W2040201907C11413529 @default.
- W2040201907 hasConceptScore W2040201907C154945302 @default.
- W2040201907 hasConceptScore W2040201907C2776321320 @default.
- W2040201907 hasConceptScore W2040201907C33923547 @default.
- W2040201907 hasConceptScore W2040201907C41008148 @default.
- W2040201907 hasIssue "1" @default.
- W2040201907 hasLocation W20402019071 @default.
- W2040201907 hasOpenAccess W2040201907 @default.
- W2040201907 hasPrimaryLocation W20402019071 @default.
- W2040201907 hasRelatedWork W151193258 @default.
- W2040201907 hasRelatedWork W1529400504 @default.
- W2040201907 hasRelatedWork W1871911958 @default.
- W2040201907 hasRelatedWork W1892467659 @default.
- W2040201907 hasRelatedWork W2348710178 @default.
- W2040201907 hasRelatedWork W2808586768 @default.
- W2040201907 hasRelatedWork W2998403542 @default.
- W2040201907 hasRelatedWork W3201926073 @default.
- W2040201907 hasRelatedWork W38394648 @default.
- W2040201907 hasRelatedWork W73525116 @default.
- W2040201907 hasVolume "24" @default.
- W2040201907 isParatext "false" @default.
- W2040201907 isRetracted "false" @default.
- W2040201907 magId "2040201907" @default.
- W2040201907 workType "article" @default.