Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040205512> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2040205512 endingPage "575" @default.
- W2040205512 startingPage "551" @default.
- W2040205512 abstract "In this paper, the asymptotic behavior of decision procedures will be studied for a particular class of multiple decision problems. The study will throw some light on the desirability of the minimax decision procedure when the number of observations is large, and it will be seen that decision procedures frequently exist which are superior to the minimax decision procedure for large samples. The fact that the minimax decision procedure may be desirable in certain problems for small samples but undesirable for large samples was revealed by Hodges and Lehmann [1] in connection with estimation problems. Robbins [2] suggested the term asymptotically subminimax for the type of superior procedures which may then exist. A definition of this term which will be useful for an investigation of the asymptotic behavior of decision procedures, will be given in Section 1. A major part of this paper will be concerned with certain sequences of decision procedures called asymptotically admissible which have desirable properties similar to those of admissible decision procedures for the case of some fixed sample size. These asymptotically admissible decision procedures include a subclass of the asymptotically subminimax procedures, and the sequences of minimax procedures for those problems for which asymptotically subminimax procedures do not exist. The problems to be considered are those in which a random variable, $X$, is known to have a distribution function belonging to the distribution space, $Omega = {F_i(x)}, i = 1, 2, cdots, k$, and it is desired to select the true distribution function based on a sample of $n$ independent observations of $X$. It will be assumed that all $F_i(x)$ are absolutely continuous distribution functions having density functions, $f_i(x)$, and that for every constant $K$, the set of points for which $f_i(x)/f_j(x) = K (i neq j)$ is a set of probability measure zero under every $F$ and all possible $i$ and $j$. A simple loss function, $W(F_i, d_j)$, where $d_j$ is the decision to select $F_j$, will be used with $W(F_i, d_j) = 1$ if an incorrect decision is made (i.e. $i neq j)$, and $W(F_i, d_j) = 0$ if a correct decision is made (i.e. $i = j$). For such a loss function, the expected loss is simply the probability of making an incorrect decision. Section 1 will be concerned with asymptotically minimax sequences of decision procedures and Section 2 will be concerned with asymptotic admissibility. It will be seen that the asymptotic behavior of the minimax decision procedure depends on the limits of the components in the sequence of least favorable a priori distributions. Theorem 2.2 gives a sufficient condition, in terms of these limit values, for the minimax procedure to be asymptotically admissible. In Section 3, a detailed study will be made of the class of problems where $Omega$ consists of $k$ univariate normal distributions having the same variance but different means. Let the means be denoted by $theta_i (i = 1, 2, cdots, k)$ with $theta_1 < theta_2 < cdots < theta_k$, and let $min_i(theta_{i+1} - theta_i) = gamma$. Then Theorems 3.1 and 3.6 will show that the minimax procedure is asymptotically admissible when the means can be put into sets, each set containing the same number, $bar{n} geqq 2$, of consecutive means, with a difference of $gamma$ between any two consecutive means of a set, and a difference greater than $gamma$ between any two means not belonging to the same set. Theorems 3.2 and 3.3 will show that in all other cases the minimax procedure is asymptotically inadmissible, and asymptotically subminimax procedures will be constructed for all these cases. Although a complete study of the asymptotic admissibility of asymptotically subminimax procedures will not be made in this paper, Theorem 3.7 will show that a certain asymptotically subminimax procedure is asymptotically admissible for all the cases covered by Theorem 3.3 and for some of the cases covered by Theorem 3.2. On the other hand, for those cases covered by Theorem 3.2 with an $Omega$ consisting of only 3 means, it will be shown that every asymptotically subminimax procedure is asymptotically inadmissible." @default.
- W2040205512 created "2016-06-24" @default.
- W2040205512 creator A5001188160 @default.
- W2040205512 date "1955-12-01" @default.
- W2040205512 modified "2023-09-25" @default.
- W2040205512 title "On the Asymptotic Behavior of Decision Procedures" @default.
- W2040205512 cites W1599798800 @default.
- W2040205512 cites W2023701086 @default.
- W2040205512 cites W2046495522 @default.
- W2040205512 doi "https://doi.org/10.1214/aoms/1177728417" @default.
- W2040205512 hasPublicationYear "1955" @default.
- W2040205512 type Work @default.
- W2040205512 sameAs 2040205512 @default.
- W2040205512 citedByCount "1" @default.
- W2040205512 crossrefType "journal-article" @default.
- W2040205512 hasAuthorship W2040205512A5001188160 @default.
- W2040205512 hasBestOaLocation W20402055121 @default.
- W2040205512 hasConcept C105795698 @default.
- W2040205512 hasConcept C11413529 @default.
- W2040205512 hasConcept C115988155 @default.
- W2040205512 hasConcept C121332964 @default.
- W2040205512 hasConcept C126255220 @default.
- W2040205512 hasConcept C14036430 @default.
- W2040205512 hasConcept C144237770 @default.
- W2040205512 hasConcept C149728462 @default.
- W2040205512 hasConcept C150325174 @default.
- W2040205512 hasConcept C154945302 @default.
- W2040205512 hasConcept C181789720 @default.
- W2040205512 hasConcept C185592680 @default.
- W2040205512 hasConcept C198531522 @default.
- W2040205512 hasConcept C2777212361 @default.
- W2040205512 hasConcept C28826006 @default.
- W2040205512 hasConcept C28901747 @default.
- W2040205512 hasConcept C33923547 @default.
- W2040205512 hasConcept C41008148 @default.
- W2040205512 hasConcept C43617362 @default.
- W2040205512 hasConcept C61797465 @default.
- W2040205512 hasConcept C62520636 @default.
- W2040205512 hasConcept C78458016 @default.
- W2040205512 hasConcept C84525736 @default.
- W2040205512 hasConcept C86803240 @default.
- W2040205512 hasConceptScore W2040205512C105795698 @default.
- W2040205512 hasConceptScore W2040205512C11413529 @default.
- W2040205512 hasConceptScore W2040205512C115988155 @default.
- W2040205512 hasConceptScore W2040205512C121332964 @default.
- W2040205512 hasConceptScore W2040205512C126255220 @default.
- W2040205512 hasConceptScore W2040205512C14036430 @default.
- W2040205512 hasConceptScore W2040205512C144237770 @default.
- W2040205512 hasConceptScore W2040205512C149728462 @default.
- W2040205512 hasConceptScore W2040205512C150325174 @default.
- W2040205512 hasConceptScore W2040205512C154945302 @default.
- W2040205512 hasConceptScore W2040205512C181789720 @default.
- W2040205512 hasConceptScore W2040205512C185592680 @default.
- W2040205512 hasConceptScore W2040205512C198531522 @default.
- W2040205512 hasConceptScore W2040205512C2777212361 @default.
- W2040205512 hasConceptScore W2040205512C28826006 @default.
- W2040205512 hasConceptScore W2040205512C28901747 @default.
- W2040205512 hasConceptScore W2040205512C33923547 @default.
- W2040205512 hasConceptScore W2040205512C41008148 @default.
- W2040205512 hasConceptScore W2040205512C43617362 @default.
- W2040205512 hasConceptScore W2040205512C61797465 @default.
- W2040205512 hasConceptScore W2040205512C62520636 @default.
- W2040205512 hasConceptScore W2040205512C78458016 @default.
- W2040205512 hasConceptScore W2040205512C84525736 @default.
- W2040205512 hasConceptScore W2040205512C86803240 @default.
- W2040205512 hasIssue "4" @default.
- W2040205512 hasLocation W20402055121 @default.
- W2040205512 hasOpenAccess W2040205512 @default.
- W2040205512 hasPrimaryLocation W20402055121 @default.
- W2040205512 hasRelatedWork W1541798425 @default.
- W2040205512 hasRelatedWork W2027458217 @default.
- W2040205512 hasRelatedWork W2040205512 @default.
- W2040205512 hasRelatedWork W2051042991 @default.
- W2040205512 hasRelatedWork W2058935990 @default.
- W2040205512 hasRelatedWork W2062725115 @default.
- W2040205512 hasRelatedWork W2077517625 @default.
- W2040205512 hasRelatedWork W2079672020 @default.
- W2040205512 hasRelatedWork W2350406894 @default.
- W2040205512 hasRelatedWork W3108582778 @default.
- W2040205512 hasVolume "26" @default.
- W2040205512 isParatext "false" @default.
- W2040205512 isRetracted "false" @default.
- W2040205512 magId "2040205512" @default.
- W2040205512 workType "article" @default.