Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040207527> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2040207527 endingPage "1972" @default.
- W2040207527 startingPage "1970" @default.
- W2040207527 abstract "As biologists, we are brought up with the concept that mammals are homeothermic, so they tightly regulate body temperature through a complex balance between thermogenesis and heat conservation and dissipation mechanisms. One of the remarkable features of the natural world is that many mammals can also show torpor or hibernation. They can change the parameters of this homeostatic process, and either undergo daily (torpor) or extended periods (hibernation) when body temperature falls towards ambient environmental values. Homeostasis, therefore, becomes rheostasis (1), yet neural and peripheral tissues retain their functional integrity despite marked hypoxia and hypoglcemia. We do not understand fully how this profound change in physiology comes about, but in the current issue of Endocrinology, evidence is provided that up-regulation of thioredoxin-interacting protein (Txnip) in the ependymal cell layer of the hypothalamus is associated with this process (2). Previous studies have suggested that Txnip expressed in the mediobasal hypothalamus plays a role in nutrient sensing (3) and may specifically regulate leptin sensitivity in neuropeptide Y/agouti-related peptide neurons (4). Intriguingly, the current study indicates that enhanced expression is likely to be occurring within tanycyte cells (Figure 1). This is a very timely observation, because there is a growing interest in the role of these cells both in nutrient sensing (5) and as regulators of hypothalamic neurogenesis (6–8) and plasticity (9, 10) that may underlie long-term changes in appetite and energy expenditure. Torpor can occur for a number of reasons in small mammals. Commonly, it is an adaptation to survive winter in temperate or arctic environments, but it can also occur as a response to severely limited food supply or caloric restriction, or to acute cold exposure. Hand et al (2) initially found up-regulation of Txnip in a transgenic mouse lacking the G-protein coupled receptor (GPR50) orphan receptor, which readily enters torpor in response to mild fasting, perhaps reflecting a deficit in hypothalamic nutrient sensing (11). They then found that up-regulation of hypothalamic Txnip occurred in all the various natural types of torpor: seasonal torpor in the Siberian hamster, Phodopus sungorus, torpor in wild-type mice during prolonged fasting and cold exposure, and also in a pharmacological model where mice were treated with 2-deoxyglucose to inhibit glycolysis. Up-regulation of Txnip, therefore, appears to be a universal feature of torpor, although whether it is causal in generating the hypothermic state or is a downstream consequence of torpor has not yet been resolved. The authors note that transgenic mice lacking Txnip fail to enter torpor when fasted for 24 hours, supporting a causal role, and they suggest that its role is to reduce whole-body energy expenditure in order to sustain the hypothermic and hypometabolic state. This concept is supported by their observation that Txnip expression is also elevated in some peripheral tissues during torpor, in particular in brown adipose tissue. Most tellingly, the authors note previous studies showing that transgenic mice lacking Txnip die during a prolonged fast (12), implying that Txnip has a protective function during the extreme hypometabolic state experienced during torpor, which is critical for survival of periods of drastically reduced food availability. Perhaps the most interesting aspect of the current study is that it refocuses attention on tanycytes as a key anatomical substrate for the regulation of energy metabolism. The authors themselves are circumspect as to whether the Txnip gene expression in the ependymal cell layer as identified by in situ hybridization is actually in tanycyte cells." @default.
- W2040207527 created "2016-06-24" @default.
- W2040207527 creator A5060226730 @default.
- W2040207527 creator A5061640534 @default.
- W2040207527 date "2013-06-01" @default.
- W2040207527 modified "2023-09-26" @default.
- W2040207527 title "Txnip, Tanycytes, and Torpor" @default.
- W2040207527 cites W1993305414 @default.
- W2040207527 cites W2019911667 @default.
- W2040207527 cites W2031632319 @default.
- W2040207527 cites W2035032297 @default.
- W2040207527 cites W2065522875 @default.
- W2040207527 cites W2071162290 @default.
- W2040207527 cites W2073287644 @default.
- W2040207527 cites W2075404840 @default.
- W2040207527 cites W2083250868 @default.
- W2040207527 cites W2091754009 @default.
- W2040207527 cites W2106962071 @default.
- W2040207527 cites W2119270579 @default.
- W2040207527 cites W2121637377 @default.
- W2040207527 cites W2125333644 @default.
- W2040207527 cites W2156796753 @default.
- W2040207527 cites W2163658484 @default.
- W2040207527 cites W2169911458 @default.
- W2040207527 doi "https://doi.org/10.1210/en.2013-1390" @default.
- W2040207527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23687114" @default.
- W2040207527 hasPublicationYear "2013" @default.
- W2040207527 type Work @default.
- W2040207527 sameAs 2040207527 @default.
- W2040207527 citedByCount "2" @default.
- W2040207527 countsByYear W20402075272021 @default.
- W2040207527 countsByYear W20402075272023 @default.
- W2040207527 crossrefType "journal-article" @default.
- W2040207527 hasAuthorship W2040207527A5060226730 @default.
- W2040207527 hasAuthorship W2040207527A5061640534 @default.
- W2040207527 hasBestOaLocation W20402075271 @default.
- W2040207527 hasConcept C100564792 @default.
- W2040207527 hasConcept C126322002 @default.
- W2040207527 hasConcept C134018914 @default.
- W2040207527 hasConcept C2776151105 @default.
- W2040207527 hasConcept C2779076967 @default.
- W2040207527 hasConcept C3623737 @default.
- W2040207527 hasConcept C66538056 @default.
- W2040207527 hasConcept C71924100 @default.
- W2040207527 hasConcept C86803240 @default.
- W2040207527 hasConceptScore W2040207527C100564792 @default.
- W2040207527 hasConceptScore W2040207527C126322002 @default.
- W2040207527 hasConceptScore W2040207527C134018914 @default.
- W2040207527 hasConceptScore W2040207527C2776151105 @default.
- W2040207527 hasConceptScore W2040207527C2779076967 @default.
- W2040207527 hasConceptScore W2040207527C3623737 @default.
- W2040207527 hasConceptScore W2040207527C66538056 @default.
- W2040207527 hasConceptScore W2040207527C71924100 @default.
- W2040207527 hasConceptScore W2040207527C86803240 @default.
- W2040207527 hasIssue "6" @default.
- W2040207527 hasLocation W20402075271 @default.
- W2040207527 hasLocation W20402075272 @default.
- W2040207527 hasOpenAccess W2040207527 @default.
- W2040207527 hasPrimaryLocation W20402075271 @default.
- W2040207527 hasRelatedWork W1966504330 @default.
- W2040207527 hasRelatedWork W1966775726 @default.
- W2040207527 hasRelatedWork W1974041167 @default.
- W2040207527 hasRelatedWork W1979139803 @default.
- W2040207527 hasRelatedWork W2030889776 @default.
- W2040207527 hasRelatedWork W2037631372 @default.
- W2040207527 hasRelatedWork W2040058909 @default.
- W2040207527 hasRelatedWork W2132898409 @default.
- W2040207527 hasRelatedWork W2748952813 @default.
- W2040207527 hasRelatedWork W4249176446 @default.
- W2040207527 hasVolume "154" @default.
- W2040207527 isParatext "false" @default.
- W2040207527 isRetracted "false" @default.
- W2040207527 magId "2040207527" @default.
- W2040207527 workType "article" @default.