Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040208504> ?p ?o ?g. }
- W2040208504 endingPage "225" @default.
- W2040208504 startingPage "213" @default.
- W2040208504 abstract "Summary This study first focuses on comprehensive evaluating three widely used satellite precipitation products (TMPA 3B42V6, TMPA 3B42RT, and CMORPH) with a dense rain gauge network in the Mishui basin (9972 km 2 ) in South China and then optimally merge their simulated hydrologic flows with the semi-distributed Xinanjiang model using the Bayesian model averaging method. The initial satellite precipitation data comparisons show that the reanalyzed 3B42V6, with a bias of −4.54%, matched best with the rain gauge observations, while the two near real-time satellite datasets (3B42RT and CMORPH) largely underestimated precipitation by 42.72% and 40.81% respectively. With the model parameters first benchmarked by the rain gauge data, the behavior of the streamflow simulation from the 3B42V6 was also the most optimal amongst the three products, while the two near real-time satellite datasets produced deteriorated biases and Nash–Sutcliffe coefficients (NSCEs). Still, when the model parameters were recalibrated by each individual satellite data, the performance of the streamflow simulations from the two near real-time satellite products were significantly improved, thus demonstrating the need for specific calibrations of the hydrological models for the near real-time satellite inputs. Moreover, when optimally merged with respect to the streamflows forced by the two near real-time satellite precipitation products and all the three satellite precipitation products using the Bayesian model averaging method, the resulted streamflow series further improved and became more robust. In summary, the three current state-of-the-art satellite precipitation products have demonstrated potential in hydrological research and applications. The benchmarking, recalibration, and optimal merging schemes for streamflow simulation at a basin scale described in the present work will hopefully be a reference for future utilizations of satellite precipitation products in global and regional hydrological applications." @default.
- W2040208504 created "2016-06-24" @default.
- W2040208504 creator A5000681173 @default.
- W2040208504 creator A5023528036 @default.
- W2040208504 creator A5030337841 @default.
- W2040208504 creator A5061429169 @default.
- W2040208504 creator A5066473046 @default.
- W2040208504 creator A5067645358 @default.
- W2040208504 creator A5073794558 @default.
- W2040208504 date "2012-07-01" @default.
- W2040208504 modified "2023-09-30" @default.
- W2040208504 title "Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method" @default.
- W2040208504 cites W1527594523 @default.
- W2040208504 cites W1608957158 @default.
- W2040208504 cites W1662579755 @default.
- W2040208504 cites W1909649765 @default.
- W2040208504 cites W1968646712 @default.
- W2040208504 cites W1970492040 @default.
- W2040208504 cites W1972770267 @default.
- W2040208504 cites W1977006665 @default.
- W2040208504 cites W1990364733 @default.
- W2040208504 cites W1990779154 @default.
- W2040208504 cites W1995622703 @default.
- W2040208504 cites W2010441009 @default.
- W2040208504 cites W2023194175 @default.
- W2040208504 cites W2026026281 @default.
- W2040208504 cites W2026303775 @default.
- W2040208504 cites W2033904036 @default.
- W2040208504 cites W2060040378 @default.
- W2040208504 cites W2060608677 @default.
- W2040208504 cites W2060747052 @default.
- W2040208504 cites W2069556938 @default.
- W2040208504 cites W2086998843 @default.
- W2040208504 cites W2087443816 @default.
- W2040208504 cites W2099270539 @default.
- W2040208504 cites W2099596680 @default.
- W2040208504 cites W2101394945 @default.
- W2040208504 cites W2119803205 @default.
- W2040208504 cites W2122315938 @default.
- W2040208504 cites W2122389133 @default.
- W2040208504 cites W2136031340 @default.
- W2040208504 cites W2148265007 @default.
- W2040208504 cites W2152627382 @default.
- W2040208504 cites W2165508348 @default.
- W2040208504 cites W2172609192 @default.
- W2040208504 doi "https://doi.org/10.1016/j.jhydrol.2012.05.055" @default.
- W2040208504 hasPublicationYear "2012" @default.
- W2040208504 type Work @default.
- W2040208504 sameAs 2040208504 @default.
- W2040208504 citedByCount "211" @default.
- W2040208504 countsByYear W20402085042013 @default.
- W2040208504 countsByYear W20402085042014 @default.
- W2040208504 countsByYear W20402085042015 @default.
- W2040208504 countsByYear W20402085042016 @default.
- W2040208504 countsByYear W20402085042017 @default.
- W2040208504 countsByYear W20402085042018 @default.
- W2040208504 countsByYear W20402085042019 @default.
- W2040208504 countsByYear W20402085042020 @default.
- W2040208504 countsByYear W20402085042021 @default.
- W2040208504 countsByYear W20402085042022 @default.
- W2040208504 countsByYear W20402085042023 @default.
- W2040208504 crossrefType "journal-article" @default.
- W2040208504 hasAuthorship W2040208504A5000681173 @default.
- W2040208504 hasAuthorship W2040208504A5023528036 @default.
- W2040208504 hasAuthorship W2040208504A5030337841 @default.
- W2040208504 hasAuthorship W2040208504A5061429169 @default.
- W2040208504 hasAuthorship W2040208504A5066473046 @default.
- W2040208504 hasAuthorship W2040208504A5067645358 @default.
- W2040208504 hasAuthorship W2040208504A5073794558 @default.
- W2040208504 hasConcept C107054158 @default.
- W2040208504 hasConcept C107673813 @default.
- W2040208504 hasConcept C120961793 @default.
- W2040208504 hasConcept C121332964 @default.
- W2040208504 hasConcept C126197015 @default.
- W2040208504 hasConcept C127313418 @default.
- W2040208504 hasConcept C127413603 @default.
- W2040208504 hasConcept C146978453 @default.
- W2040208504 hasConcept C153294291 @default.
- W2040208504 hasConcept C154945302 @default.
- W2040208504 hasConcept C166957645 @default.
- W2040208504 hasConcept C187320778 @default.
- W2040208504 hasConcept C19269812 @default.
- W2040208504 hasConcept C39432304 @default.
- W2040208504 hasConcept C40976572 @default.
- W2040208504 hasConcept C41008148 @default.
- W2040208504 hasConcept C49204034 @default.
- W2040208504 hasConcept C76886044 @default.
- W2040208504 hasConcept C95457728 @default.
- W2040208504 hasConceptScore W2040208504C107054158 @default.
- W2040208504 hasConceptScore W2040208504C107673813 @default.
- W2040208504 hasConceptScore W2040208504C120961793 @default.
- W2040208504 hasConceptScore W2040208504C121332964 @default.
- W2040208504 hasConceptScore W2040208504C126197015 @default.
- W2040208504 hasConceptScore W2040208504C127313418 @default.
- W2040208504 hasConceptScore W2040208504C127413603 @default.
- W2040208504 hasConceptScore W2040208504C146978453 @default.
- W2040208504 hasConceptScore W2040208504C153294291 @default.
- W2040208504 hasConceptScore W2040208504C154945302 @default.