Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040251481> ?p ?o ?g. }
- W2040251481 endingPage "1387" @default.
- W2040251481 startingPage "1377" @default.
- W2040251481 abstract "Conventional process monitoring based on principal component analysis (PCA) has been applied to many industrial chemical processes. However, such PCA-based approaches assume that the process is operating in a steady state and consequently that the process data are normally distributed and contain no time correlations. These assumptions significantly limit the applicability of PCA-based approaches to the monitoring of real processes. In this paper, we propose a more exact and realistic process monitoring method that does not require that the process data be normally distributed. Specifically, the concept of conventional PCA is expanded such that a Gaussian mixture model (GMM) is used to approximate the data pattern in the model subspace obtained by PCA. The use of a mixture of local Gaussian models means that the proposed approach can be applied to arbitrary datasets, not just those showing a normal distribution. To use the GMM for monitoring, the overall T2 and Q statistics were used as the monitoring guidelines for fault detection. The proposed approach significantly relaxes the restrictions inherent in conventional PCA-based approaches in regard to the raw data pattern, and can be expanded to dynamic process monitoring without developing a complicated dynamic model. In addition, a GMM via discriminant analysis is proposed to isolate faults. The proposed monitoring method was successfully applied to three case studies: (1) simple two-dimensional toy problems, (2) a simulated 4×4 dynamic process, and (3) a simulated non-isothermal continuous stirred tank reactor (CSTR) process. These application studies demonstrated that, in comparison to conventional PCA-based monitoring, the proposed fault detection and isolation (FDI) scheme is more accurate and efficient." @default.
- W2040251481 created "2016-06-24" @default.
- W2040251481 creator A5023381560 @default.
- W2040251481 creator A5023400522 @default.
- W2040251481 creator A5055599677 @default.
- W2040251481 date "2004-07-01" @default.
- W2040251481 modified "2023-10-17" @default.
- W2040251481 title "Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis" @default.
- W2040251481 cites W1971052017 @default.
- W2040251481 cites W1978677160 @default.
- W2040251481 cites W1979357005 @default.
- W2040251481 cites W1990283595 @default.
- W2040251481 cites W1991390949 @default.
- W2040251481 cites W1995235836 @default.
- W2040251481 cites W2010481643 @default.
- W2040251481 cites W2011372029 @default.
- W2040251481 cites W2015715489 @default.
- W2040251481 cites W2052761631 @default.
- W2040251481 cites W2059998433 @default.
- W2040251481 cites W2060966665 @default.
- W2040251481 cites W2062332880 @default.
- W2040251481 cites W2062348962 @default.
- W2040251481 cites W2066551872 @default.
- W2040251481 cites W2068561554 @default.
- W2040251481 cites W2077791644 @default.
- W2040251481 cites W2083822144 @default.
- W2040251481 cites W2089468765 @default.
- W2040251481 cites W2090951562 @default.
- W2040251481 cites W2158863190 @default.
- W2040251481 cites W2171277043 @default.
- W2040251481 cites W2503993098 @default.
- W2040251481 cites W2616573327 @default.
- W2040251481 doi "https://doi.org/10.1016/j.compchemeng.2003.09.031" @default.
- W2040251481 hasPublicationYear "2004" @default.
- W2040251481 type Work @default.
- W2040251481 sameAs 2040251481 @default.
- W2040251481 citedByCount "192" @default.
- W2040251481 countsByYear W20402514812012 @default.
- W2040251481 countsByYear W20402514812013 @default.
- W2040251481 countsByYear W20402514812014 @default.
- W2040251481 countsByYear W20402514812015 @default.
- W2040251481 countsByYear W20402514812016 @default.
- W2040251481 countsByYear W20402514812017 @default.
- W2040251481 countsByYear W20402514812018 @default.
- W2040251481 countsByYear W20402514812019 @default.
- W2040251481 countsByYear W20402514812020 @default.
- W2040251481 countsByYear W20402514812021 @default.
- W2040251481 countsByYear W20402514812022 @default.
- W2040251481 countsByYear W20402514812023 @default.
- W2040251481 crossrefType "journal-article" @default.
- W2040251481 hasAuthorship W2040251481A5023381560 @default.
- W2040251481 hasAuthorship W2040251481A5023400522 @default.
- W2040251481 hasAuthorship W2040251481A5055599677 @default.
- W2040251481 hasConcept C111919701 @default.
- W2040251481 hasConcept C124101348 @default.
- W2040251481 hasConcept C127413603 @default.
- W2040251481 hasConcept C147597530 @default.
- W2040251481 hasConcept C152745839 @default.
- W2040251481 hasConcept C153180895 @default.
- W2040251481 hasConcept C154945302 @default.
- W2040251481 hasConcept C163716315 @default.
- W2040251481 hasConcept C172707124 @default.
- W2040251481 hasConcept C185592680 @default.
- W2040251481 hasConcept C27438332 @default.
- W2040251481 hasConcept C32834561 @default.
- W2040251481 hasConcept C41008148 @default.
- W2040251481 hasConcept C42360764 @default.
- W2040251481 hasConcept C61224824 @default.
- W2040251481 hasConcept C61326573 @default.
- W2040251481 hasConcept C67334161 @default.
- W2040251481 hasConcept C69738355 @default.
- W2040251481 hasConcept C98045186 @default.
- W2040251481 hasConceptScore W2040251481C111919701 @default.
- W2040251481 hasConceptScore W2040251481C124101348 @default.
- W2040251481 hasConceptScore W2040251481C127413603 @default.
- W2040251481 hasConceptScore W2040251481C147597530 @default.
- W2040251481 hasConceptScore W2040251481C152745839 @default.
- W2040251481 hasConceptScore W2040251481C153180895 @default.
- W2040251481 hasConceptScore W2040251481C154945302 @default.
- W2040251481 hasConceptScore W2040251481C163716315 @default.
- W2040251481 hasConceptScore W2040251481C172707124 @default.
- W2040251481 hasConceptScore W2040251481C185592680 @default.
- W2040251481 hasConceptScore W2040251481C27438332 @default.
- W2040251481 hasConceptScore W2040251481C32834561 @default.
- W2040251481 hasConceptScore W2040251481C41008148 @default.
- W2040251481 hasConceptScore W2040251481C42360764 @default.
- W2040251481 hasConceptScore W2040251481C61224824 @default.
- W2040251481 hasConceptScore W2040251481C61326573 @default.
- W2040251481 hasConceptScore W2040251481C67334161 @default.
- W2040251481 hasConceptScore W2040251481C69738355 @default.
- W2040251481 hasConceptScore W2040251481C98045186 @default.
- W2040251481 hasIssue "8" @default.
- W2040251481 hasLocation W20402514811 @default.
- W2040251481 hasOpenAccess W2040251481 @default.
- W2040251481 hasPrimaryLocation W20402514811 @default.
- W2040251481 hasRelatedWork W1973827079 @default.
- W2040251481 hasRelatedWork W1982383215 @default.
- W2040251481 hasRelatedWork W2126175004 @default.