Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040287532> ?p ?o ?g. }
- W2040287532 endingPage "7602" @default.
- W2040287532 startingPage "7593" @default.
- W2040287532 abstract "Purpose: Fast and accurate transit portal dosimetry was investigated by developing a density‐scaled layer model of electronic portal imaging device (EPID) and applying it to a clinical environment. Methods: The model was developed for fast Monte Carlo dose calculation. The model was validated through comparison with measurements of dose on EPID using first open beams of varying field sizes under a 20‐cm‐thick flat phantom. After this basic validation, the model was further tested by applying it to transit dosimetry and dose reconstruction that employed our predetermined dose‐response‐based algorithm developed earlier. The application employed clinical intensity‐modulated beams irradiated on a Rando phantom. The clinical beams were obtained through planning on pelvic regions of the Rando phantom simulating prostate and large pelvis intensity modulated radiation therapy. To enhance agreement between calculations and measurements of dose near penumbral regions, convolution conversion of acquired EPID images was alternatively used. In addition, thickness‐dependent image‐to‐dose calibration factors were generated through measurements of image and calculations of dose in EPID through flat phantoms of various thicknesses. The factors were used to convert acquired images in EPID into dose. Results: For open beam measurements, the model showed agreement with measurements in dose difference better than 2% across open fields. For tests with a Rando phantom, the transit dosimetry measurements were compared with forwardly calculated doses in EPID showing gamma pass rates between 90.8% and 98.8% given 4.5 mm distance‐to‐agreement (DTA) and 3% dose difference (DD) for all individual beams tried in this study. The reconstructed dose in the phantom was compared with forwardly calculated doses showing pass rates between 93.3% and 100% in isocentric perpendicular planes to the beam direction given 3 mm DTA and 3% DD for all beams. On isocentric axial planes, the pass rates varied between 95.8% and 99.9% for all individual beams and they were 98.2% and 99.9% for the composite beams of the small and large pelvis cases, respectively. Three‐dimensional gamma pass rates were 99.0% and 96.4% for the small and large pelvis cases, respectively. Conclusions: The layer model of EPID built for Monte Carlo calculations offered fast (less than 1 min) and accurate calculation for transit dosimety and dose reconstruction." @default.
- W2040287532 created "2016-06-24" @default.
- W2040287532 creator A5034363385 @default.
- W2040287532 creator A5062361182 @default.
- W2040287532 creator A5074585611 @default.
- W2040287532 creator A5083751923 @default.
- W2040287532 creator A5087612857 @default.
- W2040287532 creator A5091296545 @default.
- W2040287532 date "2012-11-29" @default.
- W2040287532 modified "2023-10-01" @default.
- W2040287532 title "Fast transit portal dosimetry using density-scaled layer modeling of aSi-based electronic portal imaging device and Monte Carlo method" @default.
- W2040287532 cites W1967121735 @default.
- W2040287532 cites W1969125839 @default.
- W2040287532 cites W1973124272 @default.
- W2040287532 cites W1984773744 @default.
- W2040287532 cites W1994858835 @default.
- W2040287532 cites W1997427435 @default.
- W2040287532 cites W2010887698 @default.
- W2040287532 cites W2016158212 @default.
- W2040287532 cites W2021455992 @default.
- W2040287532 cites W2035265215 @default.
- W2040287532 cites W2036665707 @default.
- W2040287532 cites W2044918922 @default.
- W2040287532 cites W2047762563 @default.
- W2040287532 cites W2057208460 @default.
- W2040287532 cites W2057464839 @default.
- W2040287532 cites W2069567454 @default.
- W2040287532 cites W2074765702 @default.
- W2040287532 cites W2081213980 @default.
- W2040287532 cites W2095323117 @default.
- W2040287532 cites W2127539765 @default.
- W2040287532 cites W2132925891 @default.
- W2040287532 cites W2157345813 @default.
- W2040287532 cites W4248338421 @default.
- W2040287532 doi "https://doi.org/10.1118/1.4764563" @default.
- W2040287532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23231307" @default.
- W2040287532 hasPublicationYear "2012" @default.
- W2040287532 type Work @default.
- W2040287532 sameAs 2040287532 @default.
- W2040287532 citedByCount "12" @default.
- W2040287532 countsByYear W20402875322013 @default.
- W2040287532 countsByYear W20402875322014 @default.
- W2040287532 countsByYear W20402875322015 @default.
- W2040287532 countsByYear W20402875322016 @default.
- W2040287532 countsByYear W20402875322017 @default.
- W2040287532 countsByYear W20402875322020 @default.
- W2040287532 crossrefType "journal-article" @default.
- W2040287532 hasAuthorship W2040287532A5034363385 @default.
- W2040287532 hasAuthorship W2040287532A5062361182 @default.
- W2040287532 hasAuthorship W2040287532A5074585611 @default.
- W2040287532 hasAuthorship W2040287532A5083751923 @default.
- W2040287532 hasAuthorship W2040287532A5087612857 @default.
- W2040287532 hasAuthorship W2040287532A5091296545 @default.
- W2040287532 hasConcept C104293457 @default.
- W2040287532 hasConcept C105795698 @default.
- W2040287532 hasConcept C120665830 @default.
- W2040287532 hasConcept C121332964 @default.
- W2040287532 hasConcept C126838900 @default.
- W2040287532 hasConcept C165838908 @default.
- W2040287532 hasConcept C192562407 @default.
- W2040287532 hasConcept C19499675 @default.
- W2040287532 hasConcept C201645570 @default.
- W2040287532 hasConcept C2989005 @default.
- W2040287532 hasConcept C31601959 @default.
- W2040287532 hasConcept C33923547 @default.
- W2040287532 hasConcept C509974204 @default.
- W2040287532 hasConcept C62520636 @default.
- W2040287532 hasConcept C71924100 @default.
- W2040287532 hasConcept C75088862 @default.
- W2040287532 hasConcept C9267231 @default.
- W2040287532 hasConcept C94915269 @default.
- W2040287532 hasConceptScore W2040287532C104293457 @default.
- W2040287532 hasConceptScore W2040287532C105795698 @default.
- W2040287532 hasConceptScore W2040287532C120665830 @default.
- W2040287532 hasConceptScore W2040287532C121332964 @default.
- W2040287532 hasConceptScore W2040287532C126838900 @default.
- W2040287532 hasConceptScore W2040287532C165838908 @default.
- W2040287532 hasConceptScore W2040287532C192562407 @default.
- W2040287532 hasConceptScore W2040287532C19499675 @default.
- W2040287532 hasConceptScore W2040287532C201645570 @default.
- W2040287532 hasConceptScore W2040287532C2989005 @default.
- W2040287532 hasConceptScore W2040287532C31601959 @default.
- W2040287532 hasConceptScore W2040287532C33923547 @default.
- W2040287532 hasConceptScore W2040287532C509974204 @default.
- W2040287532 hasConceptScore W2040287532C62520636 @default.
- W2040287532 hasConceptScore W2040287532C71924100 @default.
- W2040287532 hasConceptScore W2040287532C75088862 @default.
- W2040287532 hasConceptScore W2040287532C9267231 @default.
- W2040287532 hasConceptScore W2040287532C94915269 @default.
- W2040287532 hasIssue "12" @default.
- W2040287532 hasLocation W20402875321 @default.
- W2040287532 hasLocation W20402875322 @default.
- W2040287532 hasOpenAccess W2040287532 @default.
- W2040287532 hasPrimaryLocation W20402875321 @default.
- W2040287532 hasRelatedWork W1968413578 @default.
- W2040287532 hasRelatedWork W1990813998 @default.
- W2040287532 hasRelatedWork W2002643279 @default.
- W2040287532 hasRelatedWork W2025656351 @default.