Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040301338> ?p ?o ?g. }
- W2040301338 endingPage "276" @default.
- W2040301338 startingPage "237" @default.
- W2040301338 abstract "We study the one-dimensional Schrödinger equation with a disordered potential of the form $$begin{aligned} V (x) = phi (x)^2+phi '(x) + kappa (x) end{aligned}$$ where $$phi (x)$$ is a Gaussian white noise with mean $$mu g$$ and variance $$g$$ , and $$kappa (x)$$ is a random superposition of delta functions distributed uniformly on the real line with mean density $$rho $$ and mean strength $$v$$ . Our study is motivated by the close connection between this problem and classical diffusion in a random environment (the Sinai problem) in the presence of random absorbers: $$phi (x)$$ models the force field acting on the diffusing particle and $$kappa (x)$$ models the absorption properties of the medium in which the diffusion takes place. The focus is on the calculation of the complex Lyapunov exponent $$ varOmega (E) = gamma (E) - mathrm{i}pi N(E) $$ , where $$N$$ is the integrated density of states per unit length and $$gamma $$ the reciprocal of the localisation length. By using the continuous version of the Dyson–Schmidt method, we find an exact formula, in terms of a Hankel function, in the particular case where the strength of the delta functions is exponentially-distributed with mean $$v=2g$$ . Building on this result, we then solve the general case— in the low-energy limit— in terms of an infinite sum of Hankel functions. Our main result, valid without restrictions on the parameters of the model, is that the integrated density of states exhibits the power law behaviour $$begin{aligned} N(E) underset{Erightarrow 0+}{sim } E^nu quad hbox {where } quad nu =sqrt{mu ^2+2rho /g}. end{aligned}$$ This confirms and extends several results obtained previously by approximate methods." @default.
- W2040301338 created "2016-06-24" @default.
- W2040301338 creator A5022415202 @default.
- W2040301338 creator A5039769530 @default.
- W2040301338 creator A5053221269 @default.
- W2040301338 date "2014-02-28" @default.
- W2040301338 modified "2023-10-03" @default.
- W2040301338 title "One-Dimensional Disordered Quantum Mechanics and Sinai Diffusion with Random Absorbers" @default.
- W2040301338 cites W1512548601 @default.
- W2040301338 cites W1591798773 @default.
- W2040301338 cites W1817893905 @default.
- W2040301338 cites W1966893379 @default.
- W2040301338 cites W1967850169 @default.
- W2040301338 cites W1971522357 @default.
- W2040301338 cites W1990083610 @default.
- W2040301338 cites W1998109885 @default.
- W2040301338 cites W1998801590 @default.
- W2040301338 cites W2019909927 @default.
- W2040301338 cites W2022928984 @default.
- W2040301338 cites W2025592106 @default.
- W2040301338 cites W2026762189 @default.
- W2040301338 cites W2031226791 @default.
- W2040301338 cites W2034196266 @default.
- W2040301338 cites W2037315394 @default.
- W2040301338 cites W2038073400 @default.
- W2040301338 cites W2039476575 @default.
- W2040301338 cites W2049745462 @default.
- W2040301338 cites W2062517214 @default.
- W2040301338 cites W2065215085 @default.
- W2040301338 cites W2066028055 @default.
- W2040301338 cites W2066406479 @default.
- W2040301338 cites W2069922305 @default.
- W2040301338 cites W2074476781 @default.
- W2040301338 cites W2076062762 @default.
- W2040301338 cites W2091468493 @default.
- W2040301338 cites W2128717599 @default.
- W2040301338 cites W2137708363 @default.
- W2040301338 cites W2140297568 @default.
- W2040301338 cites W2141679551 @default.
- W2040301338 cites W2147249521 @default.
- W2040301338 cites W3100450781 @default.
- W2040301338 cites W3100975660 @default.
- W2040301338 cites W3101202724 @default.
- W2040301338 cites W3102575613 @default.
- W2040301338 cites W3103049123 @default.
- W2040301338 cites W3103402445 @default.
- W2040301338 cites W3124037331 @default.
- W2040301338 cites W4236638103 @default.
- W2040301338 cites W625676454 @default.
- W2040301338 doi "https://doi.org/10.1007/s10955-014-0957-3" @default.
- W2040301338 hasPublicationYear "2014" @default.
- W2040301338 type Work @default.
- W2040301338 sameAs 2040301338 @default.
- W2040301338 citedByCount "13" @default.
- W2040301338 countsByYear W20403013382014 @default.
- W2040301338 countsByYear W20403013382016 @default.
- W2040301338 countsByYear W20403013382018 @default.
- W2040301338 countsByYear W20403013382019 @default.
- W2040301338 countsByYear W20403013382020 @default.
- W2040301338 countsByYear W20403013382021 @default.
- W2040301338 countsByYear W20403013382022 @default.
- W2040301338 crossrefType "journal-article" @default.
- W2040301338 hasAuthorship W2040301338A5022415202 @default.
- W2040301338 hasAuthorship W2040301338A5039769530 @default.
- W2040301338 hasAuthorship W2040301338A5053221269 @default.
- W2040301338 hasBestOaLocation W20403013384 @default.
- W2040301338 hasConcept C105795698 @default.
- W2040301338 hasConcept C121194460 @default.
- W2040301338 hasConcept C121332964 @default.
- W2040301338 hasConcept C134306372 @default.
- W2040301338 hasConcept C147120987 @default.
- W2040301338 hasConcept C188234980 @default.
- W2040301338 hasConcept C27753989 @default.
- W2040301338 hasConcept C33923547 @default.
- W2040301338 hasConcept C37914503 @default.
- W2040301338 hasConcept C62520636 @default.
- W2040301338 hasConceptScore W2040301338C105795698 @default.
- W2040301338 hasConceptScore W2040301338C121194460 @default.
- W2040301338 hasConceptScore W2040301338C121332964 @default.
- W2040301338 hasConceptScore W2040301338C134306372 @default.
- W2040301338 hasConceptScore W2040301338C147120987 @default.
- W2040301338 hasConceptScore W2040301338C188234980 @default.
- W2040301338 hasConceptScore W2040301338C27753989 @default.
- W2040301338 hasConceptScore W2040301338C33923547 @default.
- W2040301338 hasConceptScore W2040301338C37914503 @default.
- W2040301338 hasConceptScore W2040301338C62520636 @default.
- W2040301338 hasIssue "2" @default.
- W2040301338 hasLocation W20403013381 @default.
- W2040301338 hasLocation W20403013382 @default.
- W2040301338 hasLocation W20403013383 @default.
- W2040301338 hasLocation W20403013384 @default.
- W2040301338 hasLocation W20403013385 @default.
- W2040301338 hasLocation W20403013386 @default.
- W2040301338 hasOpenAccess W2040301338 @default.
- W2040301338 hasPrimaryLocation W20403013381 @default.
- W2040301338 hasRelatedWork W1564275942 @default.
- W2040301338 hasRelatedWork W1595514575 @default.
- W2040301338 hasRelatedWork W1984953408 @default.