Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040306612> ?p ?o ?g. }
- W2040306612 endingPage "347" @default.
- W2040306612 startingPage "285" @default.
- W2040306612 abstract "A {it knot manifold} is a compact, connected, irreducible, orientable $3$-manifold whose boundary is an incompressible torus. We first investigate virtual epimorphisms between the fundamental groups of small knot manifolds and prove minimality results for small knot manifolds with respect to nonzero degree maps. These results are applied later in the paper where we fix a small knot manifold $M$ and investigate various sets of characters of representations $rho: pi_1(M) to {rm PSL}_2(Bbb{C})$ whose images are discrete. We show that the topology of these sets is intimately related to the algebraic structure of the ${rm PSL}_2(Bbb{C})$-character variety of $M$ as well as dominations of manifolds by $M$ and its Dehn fillings. We apply our results to the following question of Shicheng Wang: {it Are nonzero degree maps between infinitely many distinct Dehn fillings of two hyperbolic knot manifolds $M$ and $N$ induced by a nonzero degree map $M to N$?} We show that the answer is yes generically. Using this we show that if a small $mathcal{H}$-minimal hyperbolic knot manifold admits non-homeomorphic $mathcal{H}$-minimal Dehn fillings, it admits infinitely many such fillings. We also construct the first infinite families of small, closed, connected, orientable manifolds which are minimal in the sense that they do not admit nonzero degree maps, other than homotopy equivalences, to any aspherical manifold." @default.
- W2040306612 created "2016-06-24" @default.
- W2040306612 creator A5044245375 @default.
- W2040306612 creator A5058274399 @default.
- W2040306612 date "2012-01-01" @default.
- W2040306612 modified "2023-09-25" @default.
- W2040306612 title "On character varieties, sets of discrete characters, and nonzero degree maps" @default.
- W2040306612 cites W113405286 @default.
- W2040306612 cites W137115240 @default.
- W2040306612 cites W1483679902 @default.
- W2040306612 cites W1502669108 @default.
- W2040306612 cites W1505914796 @default.
- W2040306612 cites W1509483839 @default.
- W2040306612 cites W1519262730 @default.
- W2040306612 cites W1530501787 @default.
- W2040306612 cites W1551280966 @default.
- W2040306612 cites W1557210002 @default.
- W2040306612 cites W1569032669 @default.
- W2040306612 cites W1577838117 @default.
- W2040306612 cites W1589310148 @default.
- W2040306612 cites W173191820 @default.
- W2040306612 cites W1807288557 @default.
- W2040306612 cites W1858545421 @default.
- W2040306612 cites W1873921821 @default.
- W2040306612 cites W1883499129 @default.
- W2040306612 cites W1950044811 @default.
- W2040306612 cites W1964841580 @default.
- W2040306612 cites W1970516363 @default.
- W2040306612 cites W1974354188 @default.
- W2040306612 cites W1980585398 @default.
- W2040306612 cites W1983114100 @default.
- W2040306612 cites W1984208744 @default.
- W2040306612 cites W1985991462 @default.
- W2040306612 cites W1999099500 @default.
- W2040306612 cites W2000539937 @default.
- W2040306612 cites W2002487942 @default.
- W2040306612 cites W2002615705 @default.
- W2040306612 cites W2026356122 @default.
- W2040306612 cites W2031219215 @default.
- W2040306612 cites W2040034546 @default.
- W2040306612 cites W2043735498 @default.
- W2040306612 cites W2043834059 @default.
- W2040306612 cites W2046291516 @default.
- W2040306612 cites W2052596245 @default.
- W2040306612 cites W2053980838 @default.
- W2040306612 cites W2054491460 @default.
- W2040306612 cites W2056721908 @default.
- W2040306612 cites W2063092788 @default.
- W2040306612 cites W2067684443 @default.
- W2040306612 cites W2068211956 @default.
- W2040306612 cites W2068774711 @default.
- W2040306612 cites W2072877638 @default.
- W2040306612 cites W2084633334 @default.
- W2040306612 cites W2084641659 @default.
- W2040306612 cites W2089010082 @default.
- W2040306612 cites W2091639308 @default.
- W2040306612 cites W2093641021 @default.
- W2040306612 cites W2110789508 @default.
- W2040306612 cites W2114785528 @default.
- W2040306612 cites W2130069182 @default.
- W2040306612 cites W2134644225 @default.
- W2040306612 cites W2167317913 @default.
- W2040306612 cites W2167801962 @default.
- W2040306612 cites W2169338565 @default.
- W2040306612 cites W2315813414 @default.
- W2040306612 cites W2324579300 @default.
- W2040306612 cites W2328255195 @default.
- W2040306612 cites W2331921018 @default.
- W2040306612 cites W2332288949 @default.
- W2040306612 cites W2335535158 @default.
- W2040306612 cites W2949997929 @default.
- W2040306612 cites W2962965220 @default.
- W2040306612 cites W3101444809 @default.
- W2040306612 cites W3175367423 @default.
- W2040306612 cites W423577927 @default.
- W2040306612 cites W632641545 @default.
- W2040306612 doi "https://doi.org/10.1353/ajm.2012.0013" @default.
- W2040306612 hasPublicationYear "2012" @default.
- W2040306612 type Work @default.
- W2040306612 sameAs 2040306612 @default.
- W2040306612 citedByCount "18" @default.
- W2040306612 countsByYear W20403066122012 @default.
- W2040306612 countsByYear W20403066122013 @default.
- W2040306612 countsByYear W20403066122014 @default.
- W2040306612 countsByYear W20403066122015 @default.
- W2040306612 countsByYear W20403066122016 @default.
- W2040306612 countsByYear W20403066122017 @default.
- W2040306612 countsByYear W20403066122020 @default.
- W2040306612 countsByYear W20403066122021 @default.
- W2040306612 crossrefType "journal-article" @default.
- W2040306612 hasAuthorship W2040306612A5044245375 @default.
- W2040306612 hasAuthorship W2040306612A5058274399 @default.
- W2040306612 hasBestOaLocation W20403066124 @default.
- W2040306612 hasConcept C114614502 @default.
- W2040306612 hasConcept C121332964 @default.
- W2040306612 hasConcept C127413603 @default.
- W2040306612 hasConcept C202444582 @default.
- W2040306612 hasConcept C24890656 @default.