Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040340731> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2040340731 endingPage "7804" @default.
- W2040340731 startingPage "7797" @default.
- W2040340731 abstract "Principal component analysis (PCA) is one of the powerful dimension reduction techniques widely used in data mining field. PCA tries to project the data into lower dimensional space while preserving the intrinsic information hidden in the data as much as possible. Disadvantage of PCA is that, extracted principal components (PCs) are linear combination of all features, hence PCs are may still contaminated with noise in the data. To address this problem we propose a modified version of PCA called noise free PCA (NFPCA), in which regularization is introduced during the PCs extraction step to mitigate the effect of noise. Potentials of the proposed method is assessed in two important application of high-dimensional molecular data: classification and survival prediction. Multiple publicly available real-world data sets are used for this illustration. Experimental results show that, the NFPCA produce highly informative than the ordinary PCA method. This is largely due to the fact that the NFPCA suppress the effect of noise in the PCs more efficiently with minimum information lost. The NFPCA is a promising alternative to existing PCA approaches not only in terms of highly informative PCs, but also its relatively cheap computational cost." @default.
- W2040340731 created "2016-06-24" @default.
- W2040340731 creator A5008445390 @default.
- W2040340731 creator A5021319704 @default.
- W2040340731 date "2014-12-01" @default.
- W2040340731 modified "2023-09-26" @default.
- W2040340731 title "Noise-free principal component analysis: An efficient dimension reduction technique for high dimensional molecular data" @default.
- W2040340731 cites W1651215666 @default.
- W2040340731 cites W1968735445 @default.
- W2040340731 cites W1975900269 @default.
- W2040340731 cites W1990381576 @default.
- W2040340731 cites W1991509879 @default.
- W2040340731 cites W2032739457 @default.
- W2040340731 cites W2069968238 @default.
- W2040340731 cites W2088851040 @default.
- W2040340731 cites W2097413644 @default.
- W2040340731 cites W2097897435 @default.
- W2040340731 cites W2109363337 @default.
- W2040340731 cites W2113600901 @default.
- W2040340731 cites W2118069309 @default.
- W2040340731 cites W2118638423 @default.
- W2040340731 cites W2127117261 @default.
- W2040340731 cites W2145510762 @default.
- W2040340731 cites W2147246240 @default.
- W2040340731 cites W2155974384 @default.
- W2040340731 cites W2160450758 @default.
- W2040340731 doi "https://doi.org/10.1016/j.eswa.2014.06.024" @default.
- W2040340731 hasPublicationYear "2014" @default.
- W2040340731 type Work @default.
- W2040340731 sameAs 2040340731 @default.
- W2040340731 citedByCount "12" @default.
- W2040340731 countsByYear W20403407312015 @default.
- W2040340731 countsByYear W20403407312017 @default.
- W2040340731 countsByYear W20403407312019 @default.
- W2040340731 countsByYear W20403407312020 @default.
- W2040340731 countsByYear W20403407312021 @default.
- W2040340731 countsByYear W20403407312022 @default.
- W2040340731 countsByYear W20403407312023 @default.
- W2040340731 crossrefType "journal-article" @default.
- W2040340731 hasAuthorship W2040340731A5008445390 @default.
- W2040340731 hasAuthorship W2040340731A5021319704 @default.
- W2040340731 hasConcept C115961682 @default.
- W2040340731 hasConcept C124101348 @default.
- W2040340731 hasConcept C153180895 @default.
- W2040340731 hasConcept C154945302 @default.
- W2040340731 hasConcept C163294075 @default.
- W2040340731 hasConcept C184509293 @default.
- W2040340731 hasConcept C202444582 @default.
- W2040340731 hasConcept C24252448 @default.
- W2040340731 hasConcept C27438332 @default.
- W2040340731 hasConcept C2776135515 @default.
- W2040340731 hasConcept C33676613 @default.
- W2040340731 hasConcept C33923547 @default.
- W2040340731 hasConcept C41008148 @default.
- W2040340731 hasConcept C70518039 @default.
- W2040340731 hasConcept C73555534 @default.
- W2040340731 hasConcept C99498987 @default.
- W2040340731 hasConceptScore W2040340731C115961682 @default.
- W2040340731 hasConceptScore W2040340731C124101348 @default.
- W2040340731 hasConceptScore W2040340731C153180895 @default.
- W2040340731 hasConceptScore W2040340731C154945302 @default.
- W2040340731 hasConceptScore W2040340731C163294075 @default.
- W2040340731 hasConceptScore W2040340731C184509293 @default.
- W2040340731 hasConceptScore W2040340731C202444582 @default.
- W2040340731 hasConceptScore W2040340731C24252448 @default.
- W2040340731 hasConceptScore W2040340731C27438332 @default.
- W2040340731 hasConceptScore W2040340731C2776135515 @default.
- W2040340731 hasConceptScore W2040340731C33676613 @default.
- W2040340731 hasConceptScore W2040340731C33923547 @default.
- W2040340731 hasConceptScore W2040340731C41008148 @default.
- W2040340731 hasConceptScore W2040340731C70518039 @default.
- W2040340731 hasConceptScore W2040340731C73555534 @default.
- W2040340731 hasConceptScore W2040340731C99498987 @default.
- W2040340731 hasIssue "17" @default.
- W2040340731 hasLocation W20403407311 @default.
- W2040340731 hasOpenAccess W2040340731 @default.
- W2040340731 hasPrimaryLocation W20403407311 @default.
- W2040340731 hasRelatedWork W1590686163 @default.
- W2040340731 hasRelatedWork W2022194624 @default.
- W2040340731 hasRelatedWork W2040340731 @default.
- W2040340731 hasRelatedWork W2091080939 @default.
- W2040340731 hasRelatedWork W2105715935 @default.
- W2040340731 hasRelatedWork W2140027948 @default.
- W2040340731 hasRelatedWork W2164993107 @default.
- W2040340731 hasRelatedWork W2363659892 @default.
- W2040340731 hasRelatedWork W2370292837 @default.
- W2040340731 hasRelatedWork W2913294167 @default.
- W2040340731 hasVolume "41" @default.
- W2040340731 isParatext "false" @default.
- W2040340731 isRetracted "false" @default.
- W2040340731 magId "2040340731" @default.
- W2040340731 workType "article" @default.