Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040360234> ?p ?o ?g. }
- W2040360234 endingPage "1350" @default.
- W2040360234 startingPage "1338" @default.
- W2040360234 abstract "We studied the local viscoelasticity of the apical membrane of human umbilical vein endothelial cells within confluent layers by magnetic tweezers microrheometry. Magnetic beads are coupled to various integrins by coating with fibronectin or invasin. By analyzing the deflection of beads evoked by various force scenarios we demonstrate that the cell envelope behaves as a linear viscoelastic body if forces up to 2 nN are applied for short times (<20 s) but can respond in an adaptive way if stress pulses are applied longer (>30 s). The time-dependent shear relaxation modulus G(t) exhibits three time regimes: a fast response (t < 0.05 s) where the relaxation modulus G(t) obeys a power law G(t) approximately t(-0.82+/-0.02); a plateau-like behavior (at 0.05 s < t < 0.15 s); and a slow flow-like response which is, however, partially reversible. Strain field mapping experiments with colloidal probes show that local forces induce a strain field exhibiting a range of zeta = 10 +/- 1 microm, but which could only be observed if nonmagnetic beads were coupled to the cell surface by invasin. By application of the theory of elasticity of planar bodies we estimated a surface shear modulus of 2.5 x10(-4) N/m. By assuming a thickness of the actin cortex of approximately 0.5 microm we estimate a Young modulus micro approximately 400 Pa for the apical membrane. The value agrees with a plateau modulus of an entangled or weakly cross-linked actin network of an actin concentration of 100 microM (mesh size 0.2 microm). This result together with our observation of a strong reduction of the shear modulus by the actin destabilizing agent latrunculin A suggests that the shear modulus measured by our technique is determined by the actin cortex. The effect of two ligands inducing actin stress fiber formation and centripetal contraction of cells (associated with the formation of gaps in the confluent cell monolayer) on the viscoelastic responses were studied: histamine and lysophosphatidic acid (LPA). Histamine evoked a dramatic increase of the cell stiffness by >1 order of magnitude within <30 s, which is attributed to a transient rise of the intracellular Ca(2+) level, since DMSO exerted a similar effect. The stiffening is accompanied by a concomitant rounding of the cells as observed by microinterferometry and relaxes partially in the timescale of 5 min, whereas gaps between cells close after approximately 30 min. LPA did not exert a remarkable and reproducible effect other than an occasional very weak transient increase of the shear stiffness, which shows that the gap formation activated by LPA is mediated by a different mechanism than that induced by histamine." @default.
- W2040360234 created "2016-06-24" @default.
- W2040360234 creator A5027326544 @default.
- W2040360234 creator A5055214263 @default.
- W2040360234 creator A5079842944 @default.
- W2040360234 date "2004-08-01" @default.
- W2040360234 modified "2023-10-15" @default.
- W2040360234 title "Microviscoelasticity of the Apical Cell Surface of Human Umbilical Vein Endothelial Cells (HUVEC) within Confluent Monolayers" @default.
- W2040360234 cites W1585886861 @default.
- W2040360234 cites W1979158593 @default.
- W2040360234 cites W1984601537 @default.
- W2040360234 cites W1992879522 @default.
- W2040360234 cites W1994109845 @default.
- W2040360234 cites W1994852714 @default.
- W2040360234 cites W1995478242 @default.
- W2040360234 cites W1995689163 @default.
- W2040360234 cites W2001542204 @default.
- W2040360234 cites W2002208582 @default.
- W2040360234 cites W2007513694 @default.
- W2040360234 cites W2010911121 @default.
- W2040360234 cites W2012970082 @default.
- W2040360234 cites W2013268726 @default.
- W2040360234 cites W2016283343 @default.
- W2040360234 cites W2025042015 @default.
- W2040360234 cites W2027560283 @default.
- W2040360234 cites W2032266902 @default.
- W2040360234 cites W2038349428 @default.
- W2040360234 cites W2044636093 @default.
- W2040360234 cites W2053001031 @default.
- W2040360234 cites W2054808951 @default.
- W2040360234 cites W2058366321 @default.
- W2040360234 cites W2059316403 @default.
- W2040360234 cites W2067340834 @default.
- W2040360234 cites W2082690651 @default.
- W2040360234 cites W2096791952 @default.
- W2040360234 cites W2100797465 @default.
- W2040360234 cites W2106514058 @default.
- W2040360234 cites W2106789666 @default.
- W2040360234 cites W2120000044 @default.
- W2040360234 cites W2130851152 @default.
- W2040360234 cites W2131315329 @default.
- W2040360234 cites W2138478503 @default.
- W2040360234 cites W2141583613 @default.
- W2040360234 cites W2147857868 @default.
- W2040360234 cites W2165232829 @default.
- W2040360234 cites W2170669827 @default.
- W2040360234 cites W2345336816 @default.
- W2040360234 cites W2417723458 @default.
- W2040360234 cites W277210135 @default.
- W2040360234 doi "https://doi.org/10.1529/biophysj.103.037044" @default.
- W2040360234 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1304472" @default.
- W2040360234 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15298936" @default.
- W2040360234 hasPublicationYear "2004" @default.
- W2040360234 type Work @default.
- W2040360234 sameAs 2040360234 @default.
- W2040360234 citedByCount "81" @default.
- W2040360234 countsByYear W20403602342012 @default.
- W2040360234 countsByYear W20403602342013 @default.
- W2040360234 countsByYear W20403602342014 @default.
- W2040360234 countsByYear W20403602342015 @default.
- W2040360234 countsByYear W20403602342016 @default.
- W2040360234 countsByYear W20403602342017 @default.
- W2040360234 countsByYear W20403602342018 @default.
- W2040360234 countsByYear W20403602342019 @default.
- W2040360234 countsByYear W20403602342020 @default.
- W2040360234 countsByYear W20403602342021 @default.
- W2040360234 countsByYear W20403602342022 @default.
- W2040360234 countsByYear W20403602342023 @default.
- W2040360234 crossrefType "journal-article" @default.
- W2040360234 hasAuthorship W2040360234A5027326544 @default.
- W2040360234 hasAuthorship W2040360234A5055214263 @default.
- W2040360234 hasAuthorship W2040360234A5079842944 @default.
- W2040360234 hasBestOaLocation W20403602341 @default.
- W2040360234 hasConcept C105480513 @default.
- W2040360234 hasConcept C120665830 @default.
- W2040360234 hasConcept C121332964 @default.
- W2040360234 hasConcept C12554922 @default.
- W2040360234 hasConcept C125705527 @default.
- W2040360234 hasConcept C159985019 @default.
- W2040360234 hasConcept C185592680 @default.
- W2040360234 hasConcept C186541917 @default.
- W2040360234 hasConcept C192562407 @default.
- W2040360234 hasConcept C193867417 @default.
- W2040360234 hasConcept C20198109 @default.
- W2040360234 hasConcept C202751555 @default.
- W2040360234 hasConcept C21141959 @default.
- W2040360234 hasConcept C2777411675 @default.
- W2040360234 hasConcept C55493867 @default.
- W2040360234 hasConcept C86803240 @default.
- W2040360234 hasConceptScore W2040360234C105480513 @default.
- W2040360234 hasConceptScore W2040360234C120665830 @default.
- W2040360234 hasConceptScore W2040360234C121332964 @default.
- W2040360234 hasConceptScore W2040360234C12554922 @default.
- W2040360234 hasConceptScore W2040360234C125705527 @default.
- W2040360234 hasConceptScore W2040360234C159985019 @default.
- W2040360234 hasConceptScore W2040360234C185592680 @default.
- W2040360234 hasConceptScore W2040360234C186541917 @default.
- W2040360234 hasConceptScore W2040360234C192562407 @default.