Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040380081> ?p ?o ?g. }
- W2040380081 abstract "Assuming that ${(X_n,Y_n)}$ is a sequence of cadlag processes converging in distribution to $(X,Y)$ in the Skorohod topology, conditions are given under which the sequence ${int X_n dY_n}$ converges in distribution to $int X dY$. Examples of applications are given drawn from statistics and filtering theory. In particular, assuming that $(U_n,Y_n) Rightarrow (U,Y)$ and that $F_n rightarrow F$ in an appropriate sense, conditions are given under which solutions of a sequence of stochastic differential equations $dX_n = dU_n + F_n(X_n)dY_n$ converge to a solution of $dX = dU + F(X)dY$, where $F_n$ and $F$ may depend on the past of the solution. As is well known from work of Wong and Zakai, this last conclusion fails if $Y$ is Brownian motion and the $Y_n$ are obtained by linear interpolation; however, the present theorem may be used to derive a generalization of the results of Wong and Zakai and their successors." @default.
- W2040380081 created "2016-06-24" @default.
- W2040380081 creator A5064447918 @default.
- W2040380081 creator A5065654526 @default.
- W2040380081 date "1991-07-01" @default.
- W2040380081 modified "2023-10-16" @default.
- W2040380081 title "Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations" @default.
- W2040380081 cites W1485598997 @default.
- W2040380081 cites W1568563398 @default.
- W2040380081 cites W164858608 @default.
- W2040380081 cites W1964661649 @default.
- W2040380081 cites W1967461645 @default.
- W2040380081 cites W1971830622 @default.
- W2040380081 cites W1983436998 @default.
- W2040380081 cites W1986101505 @default.
- W2040380081 cites W1991833270 @default.
- W2040380081 cites W1997345593 @default.
- W2040380081 cites W2000542972 @default.
- W2040380081 cites W2002136412 @default.
- W2040380081 cites W2015885031 @default.
- W2040380081 cites W2017032949 @default.
- W2040380081 cites W2031390620 @default.
- W2040380081 cites W2039329707 @default.
- W2040380081 cites W2044658734 @default.
- W2040380081 cites W2045338868 @default.
- W2040380081 cites W2053531848 @default.
- W2040380081 cites W2057915640 @default.
- W2040380081 cites W2061554345 @default.
- W2040380081 cites W2062649406 @default.
- W2040380081 cites W2063335719 @default.
- W2040380081 cites W2070803964 @default.
- W2040380081 cites W2072585426 @default.
- W2040380081 cites W2081877251 @default.
- W2040380081 cites W2082860490 @default.
- W2040380081 cites W2093100751 @default.
- W2040380081 cites W2126794261 @default.
- W2040380081 cites W2140353194 @default.
- W2040380081 cites W228248646 @default.
- W2040380081 cites W2343659990 @default.
- W2040380081 cites W2578416453 @default.
- W2040380081 cites W2802739963 @default.
- W2040380081 cites W435040855 @default.
- W2040380081 doi "https://doi.org/10.1214/aop/1176990334" @default.
- W2040380081 hasPublicationYear "1991" @default.
- W2040380081 type Work @default.
- W2040380081 sameAs 2040380081 @default.
- W2040380081 citedByCount "439" @default.
- W2040380081 countsByYear W20403800812012 @default.
- W2040380081 countsByYear W20403800812013 @default.
- W2040380081 countsByYear W20403800812014 @default.
- W2040380081 countsByYear W20403800812015 @default.
- W2040380081 countsByYear W20403800812016 @default.
- W2040380081 countsByYear W20403800812017 @default.
- W2040380081 countsByYear W20403800812018 @default.
- W2040380081 countsByYear W20403800812019 @default.
- W2040380081 countsByYear W20403800812020 @default.
- W2040380081 countsByYear W20403800812021 @default.
- W2040380081 countsByYear W20403800812022 @default.
- W2040380081 countsByYear W20403800812023 @default.
- W2040380081 crossrefType "journal-article" @default.
- W2040380081 hasAuthorship W2040380081A5064447918 @default.
- W2040380081 hasAuthorship W2040380081A5065654526 @default.
- W2040380081 hasBestOaLocation W20403800811 @default.
- W2040380081 hasConcept C104114177 @default.
- W2040380081 hasConcept C105795698 @default.
- W2040380081 hasConcept C110121322 @default.
- W2040380081 hasConcept C112401455 @default.
- W2040380081 hasConcept C114614502 @default.
- W2040380081 hasConcept C134306372 @default.
- W2040380081 hasConcept C137800194 @default.
- W2040380081 hasConcept C151201525 @default.
- W2040380081 hasConcept C154945302 @default.
- W2040380081 hasConcept C177148314 @default.
- W2040380081 hasConcept C202444582 @default.
- W2040380081 hasConcept C2778112365 @default.
- W2040380081 hasConcept C33923547 @default.
- W2040380081 hasConcept C38652104 @default.
- W2040380081 hasConcept C41008148 @default.
- W2040380081 hasConcept C51955184 @default.
- W2040380081 hasConcept C54355233 @default.
- W2040380081 hasConcept C57945734 @default.
- W2040380081 hasConcept C60391097 @default.
- W2040380081 hasConcept C76178495 @default.
- W2040380081 hasConcept C86803240 @default.
- W2040380081 hasConceptScore W2040380081C104114177 @default.
- W2040380081 hasConceptScore W2040380081C105795698 @default.
- W2040380081 hasConceptScore W2040380081C110121322 @default.
- W2040380081 hasConceptScore W2040380081C112401455 @default.
- W2040380081 hasConceptScore W2040380081C114614502 @default.
- W2040380081 hasConceptScore W2040380081C134306372 @default.
- W2040380081 hasConceptScore W2040380081C137800194 @default.
- W2040380081 hasConceptScore W2040380081C151201525 @default.
- W2040380081 hasConceptScore W2040380081C154945302 @default.
- W2040380081 hasConceptScore W2040380081C177148314 @default.
- W2040380081 hasConceptScore W2040380081C202444582 @default.
- W2040380081 hasConceptScore W2040380081C2778112365 @default.
- W2040380081 hasConceptScore W2040380081C33923547 @default.
- W2040380081 hasConceptScore W2040380081C38652104 @default.
- W2040380081 hasConceptScore W2040380081C41008148 @default.
- W2040380081 hasConceptScore W2040380081C51955184 @default.