Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040383681> ?p ?o ?g. }
- W2040383681 endingPage "226" @default.
- W2040383681 startingPage "211" @default.
- W2040383681 abstract "Intrinsically disordered proteins are predicted to be highly abundant and play broad biological roles in eukaryotic cells. In particular, by virtue of their structural malleability and propensity to interact with multiple binding partners, disordered proteins are thought to be specialized for roles in signaling and regulation. However, these concepts are based on in silico analyses of translated whole genome sequences, not on large-scale analyses of proteins expressed in living cells. Therefore, whether these concepts broadly apply to expressed proteins is currently unknown. Previous studies have shown that heat-treatment of cell extracts lead to partial enrichment of soluble, disordered proteins. On the basis of this observation, we sought to address the current dearth of knowledge about expressed, disordered proteins by performing a large-scale proteomics study of thermostable proteins isolated from mouse fibroblast cells. With the use of novel multidimensional chromatography methods and mass spectrometry, we identified a total of 1320 thermostable proteins from these cells. Further, we used a variety of bioinformatics methods to analyze the structural and biological properties of these proteins. Interestingly, more than 900 of these expressed proteins were predicted to be substantially disordered. These were divided into two categories, with 514 predicted to be predominantly disordered and 395 predicted to exhibit both disordered and ordered/folded features. In addition, 411 of the thermostable proteins were predicted to be folded. Despite the use of heat treatment (60 min at 98 degrees C) to partially enrich for disordered proteins, which might have been expected to select for small proteins, the sequences of these proteins exhibited a wide range of lengths (622 +/- 555 residues (average length +/- standard deviation) for disordered proteins and 569 +/- 598 residues for folded proteins). Computational structural analyses revealed several unexpected features of the thermostable proteins: (1) disordered domains and coiled-coil domains occurred together in a large number of disordered proteins, suggesting functional interplay between these domains; and (2) more than 170 proteins contained lengthy domains (>300 residues) known to be folded. Reference to Gene Ontology Consortium functional annotations revealed that, while disordered proteins play diverse biological roles in mouse fibroblasts, they do exhibit heightened involvement in several functional categories, including, cytoskeletal structure and cell movement, metabolic and biosynthetic processes, organelle structure, cell division, gene transcription, and ribonucleoprotein complexes. We believe that these results reflect the general properties of the mouse intrinsically disordered proteome (IDP-ome) although they also reflect the specialized physiology of fibroblast cells. Large-scale identification of expressed, thermostable proteins from other cell types in the future, grown under varied physiological conditions, will dramatically expand our understanding of the structural and biological properties of disordered eukaryotic proteins." @default.
- W2040383681 created "2016-06-24" @default.
- W2040383681 creator A5002881888 @default.
- W2040383681 creator A5006730060 @default.
- W2040383681 creator A5015019969 @default.
- W2040383681 creator A5017667786 @default.
- W2040383681 creator A5040281068 @default.
- W2040383681 creator A5048927341 @default.
- W2040383681 creator A5056369160 @default.
- W2040383681 creator A5059145391 @default.
- W2040383681 creator A5064905883 @default.
- W2040383681 creator A5065974063 @default.
- W2040383681 creator A5090871845 @default.
- W2040383681 date "2008-12-09" @default.
- W2040383681 modified "2023-10-13" @default.
- W2040383681 title "Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome" @default.
- W2040383681 cites W1526754730 @default.
- W2040383681 cites W1597678601 @default.
- W2040383681 cites W1895606885 @default.
- W2040383681 cites W1961177618 @default.
- W2040383681 cites W1963823250 @default.
- W2040383681 cites W1967006941 @default.
- W2040383681 cites W1967203779 @default.
- W2040383681 cites W1967974247 @default.
- W2040383681 cites W1975121208 @default.
- W2040383681 cites W1975511017 @default.
- W2040383681 cites W1979079649 @default.
- W2040383681 cites W1982211643 @default.
- W2040383681 cites W2005393972 @default.
- W2040383681 cites W2006192061 @default.
- W2040383681 cites W2011983814 @default.
- W2040383681 cites W2015546050 @default.
- W2040383681 cites W2016170088 @default.
- W2040383681 cites W2019051015 @default.
- W2040383681 cites W2021632119 @default.
- W2040383681 cites W2030610848 @default.
- W2040383681 cites W2030776726 @default.
- W2040383681 cites W2034356373 @default.
- W2040383681 cites W2034410027 @default.
- W2040383681 cites W2049476357 @default.
- W2040383681 cites W2052266087 @default.
- W2040383681 cites W2055043387 @default.
- W2040383681 cites W2055843034 @default.
- W2040383681 cites W2063859419 @default.
- W2040383681 cites W2073745520 @default.
- W2040383681 cites W2074455942 @default.
- W2040383681 cites W2085663169 @default.
- W2040383681 cites W2086055095 @default.
- W2040383681 cites W2087352121 @default.
- W2040383681 cites W2090630809 @default.
- W2040383681 cites W2092870065 @default.
- W2040383681 cites W2094005653 @default.
- W2040383681 cites W2101971471 @default.
- W2040383681 cites W2102025585 @default.
- W2040383681 cites W2103017472 @default.
- W2040383681 cites W2107214129 @default.
- W2040383681 cites W2110790611 @default.
- W2040383681 cites W2113039254 @default.
- W2040383681 cites W2114059449 @default.
- W2040383681 cites W2114823344 @default.
- W2040383681 cites W2119693327 @default.
- W2040383681 cites W2119986079 @default.
- W2040383681 cites W2120881407 @default.
- W2040383681 cites W2123280311 @default.
- W2040383681 cites W2123969230 @default.
- W2040383681 cites W2126064524 @default.
- W2040383681 cites W2126303237 @default.
- W2040383681 cites W2128142027 @default.
- W2040383681 cites W2129508689 @default.
- W2040383681 cites W2139031643 @default.
- W2040383681 cites W2144014661 @default.
- W2040383681 cites W2144252381 @default.
- W2040383681 cites W2149472608 @default.
- W2040383681 cites W2150228320 @default.
- W2040383681 cites W2151285533 @default.
- W2040383681 cites W2151334792 @default.
- W2040383681 cites W2152770371 @default.
- W2040383681 cites W2156407548 @default.
- W2040383681 cites W2163610346 @default.
- W2040383681 doi "https://doi.org/10.1021/pr800308v" @default.
- W2040383681 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2760310" @default.
- W2040383681 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19067583" @default.
- W2040383681 hasPublicationYear "2008" @default.
- W2040383681 type Work @default.
- W2040383681 sameAs 2040383681 @default.
- W2040383681 citedByCount "68" @default.
- W2040383681 countsByYear W20403836812012 @default.
- W2040383681 countsByYear W20403836812013 @default.
- W2040383681 countsByYear W20403836812014 @default.
- W2040383681 countsByYear W20403836812015 @default.
- W2040383681 countsByYear W20403836812016 @default.
- W2040383681 countsByYear W20403836812017 @default.
- W2040383681 countsByYear W20403836812018 @default.
- W2040383681 countsByYear W20403836812019 @default.
- W2040383681 countsByYear W20403836812020 @default.
- W2040383681 countsByYear W20403836812021 @default.
- W2040383681 countsByYear W20403836812022 @default.
- W2040383681 countsByYear W20403836812023 @default.