Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040388435> ?p ?o ?g. }
- W2040388435 endingPage "102" @default.
- W2040388435 startingPage "92" @default.
- W2040388435 abstract "Accurate interval forecasting of agricultural commodity futures prices over future horizons is challenging and of great interests to governments and investors, by providing a range of values rather than a point estimate. Following the well-established “linear and nonlinear” modeling framework, this study extends it to forecast interval-valued agricultural commodity futures prices with vector error correction model (VECM) and multi-output support vector regression (MSVR) (abbreviated as VECM–MSVR), which is capable of capturing the linear and nonlinear patterns exhibited in agricultural commodity futures prices. Two agricultural commodity futures prices from Chinese futures market are used to justify the performance of the proposed VECM–MSVR method against selected competitors. The quantitative and comprehensive assessments are performed and the results indicate that the proposed VECM–MSVR method is a promising alternative for forecasting interval-valued agricultural commodity futures prices." @default.
- W2040388435 created "2016-06-24" @default.
- W2040388435 creator A5006255349 @default.
- W2040388435 creator A5008587553 @default.
- W2040388435 creator A5027578915 @default.
- W2040388435 creator A5029589252 @default.
- W2040388435 creator A5044757881 @default.
- W2040388435 date "2015-03-01" @default.
- W2040388435 modified "2023-10-17" @default.
- W2040388435 title "A combination method for interval forecasting of agricultural commodity futures prices" @default.
- W2040388435 cites W1538086924 @default.
- W2040388435 cites W1558020481 @default.
- W2040388435 cites W1587141723 @default.
- W2040388435 cites W1587294646 @default.
- W2040388435 cites W1964960433 @default.
- W2040388435 cites W1965806369 @default.
- W2040388435 cites W1966095881 @default.
- W2040388435 cites W1966674204 @default.
- W2040388435 cites W1969091622 @default.
- W2040388435 cites W1978429571 @default.
- W2040388435 cites W1978463863 @default.
- W2040388435 cites W1984755515 @default.
- W2040388435 cites W1986078433 @default.
- W2040388435 cites W1994440910 @default.
- W2040388435 cites W2007369711 @default.
- W2040388435 cites W2017333734 @default.
- W2040388435 cites W2018466646 @default.
- W2040388435 cites W2018532011 @default.
- W2040388435 cites W2028072219 @default.
- W2040388435 cites W2039853520 @default.
- W2040388435 cites W2040410870 @default.
- W2040388435 cites W2042059994 @default.
- W2040388435 cites W2042304954 @default.
- W2040388435 cites W2050902901 @default.
- W2040388435 cites W2055485811 @default.
- W2040388435 cites W2060330798 @default.
- W2040388435 cites W2062776468 @default.
- W2040388435 cites W2068527816 @default.
- W2040388435 cites W2073002835 @default.
- W2040388435 cites W2074310789 @default.
- W2040388435 cites W2076396344 @default.
- W2040388435 cites W2078086293 @default.
- W2040388435 cites W2078301133 @default.
- W2040388435 cites W2081749411 @default.
- W2040388435 cites W2092388214 @default.
- W2040388435 cites W2097334502 @default.
- W2040388435 cites W2101097701 @default.
- W2040388435 cites W2112899425 @default.
- W2040388435 cites W2117014758 @default.
- W2040388435 cites W2125804487 @default.
- W2040388435 cites W2130426550 @default.
- W2040388435 cites W2146049882 @default.
- W2040388435 cites W2148747400 @default.
- W2040388435 cites W2154023761 @default.
- W2040388435 cites W2167464405 @default.
- W2040388435 cites W3020866103 @default.
- W2040388435 cites W3121242150 @default.
- W2040388435 cites W3124259626 @default.
- W2040388435 cites W3125080556 @default.
- W2040388435 cites W3125961212 @default.
- W2040388435 doi "https://doi.org/10.1016/j.knosys.2015.01.002" @default.
- W2040388435 hasPublicationYear "2015" @default.
- W2040388435 type Work @default.
- W2040388435 sameAs 2040388435 @default.
- W2040388435 citedByCount "78" @default.
- W2040388435 countsByYear W20403884352016 @default.
- W2040388435 countsByYear W20403884352017 @default.
- W2040388435 countsByYear W20403884352018 @default.
- W2040388435 countsByYear W20403884352019 @default.
- W2040388435 countsByYear W20403884352020 @default.
- W2040388435 countsByYear W20403884352021 @default.
- W2040388435 countsByYear W20403884352022 @default.
- W2040388435 countsByYear W20403884352023 @default.
- W2040388435 crossrefType "journal-article" @default.
- W2040388435 hasAuthorship W2040388435A5006255349 @default.
- W2040388435 hasAuthorship W2040388435A5008587553 @default.
- W2040388435 hasAuthorship W2040388435A5027578915 @default.
- W2040388435 hasAuthorship W2040388435A5029589252 @default.
- W2040388435 hasAuthorship W2040388435A5044757881 @default.
- W2040388435 hasConcept C10138342 @default.
- W2040388435 hasConcept C106159729 @default.
- W2040388435 hasConcept C106306483 @default.
- W2040388435 hasConcept C114614502 @default.
- W2040388435 hasConcept C121332964 @default.
- W2040388435 hasConcept C134024062 @default.
- W2040388435 hasConcept C145162277 @default.
- W2040388435 hasConcept C149782125 @default.
- W2040388435 hasConcept C158622935 @default.
- W2040388435 hasConcept C159985019 @default.
- W2040388435 hasConcept C162324750 @default.
- W2040388435 hasConcept C192562407 @default.
- W2040388435 hasConcept C204323151 @default.
- W2040388435 hasConcept C2778067643 @default.
- W2040388435 hasConcept C2779439359 @default.
- W2040388435 hasConcept C33923547 @default.
- W2040388435 hasConcept C41008148 @default.
- W2040388435 hasConcept C62520636 @default.
- W2040388435 hasConceptScore W2040388435C10138342 @default.