Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040388622> ?p ?o ?g. }
- W2040388622 endingPage "536" @default.
- W2040388622 startingPage "527" @default.
- W2040388622 abstract "Rationale and Objectives This study evaluated the performance of computed tomography (CT)-derived biomechanical based features of lung function and the presence and severity of chronic obstructive pulmonary disease (COPD). It performed well when compared to CT-derived density and textural features of lung function and the presence and severity of COPD. Materials and Methods A total of 162 subjects (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stages 0–4 and nonsmokers) subjects with CT scan performed at total lung capacity or expiration to functional residual capacity were evaluated. CT-derived biomechanical, density, and textural feature sets were compared to forced expiratory volume in 1 second (FEV1)%, FEV1/forced vital capacity, and total St. George's respiratory questionnaire scores. The ability of these feature sets to assess the presence and severity of COPD was also evaluated. Optimal features are selected by linear forward feature selection and the classification is done using k nearest neighbor learning algorithm. Results The proposed biomechanical features showed good correlations with the pulmonary function tests and health status metrics. In COPD versus non-COPD classification, biomechanical feature set achieved an area under the curve (AUC) of 0.85 performing well in comparison to density (AUC = 0.83) and texture (AUC = 0.89) feature sets. Classifying the subjects into the severity of GOLD stage using biomechanical features (AUC = 0.81) performed better than the density- and texture-based feature sets, AUC = 0.76 and 0.73, respectively. The biomechanical features performed better alone than in combination with the other two feature sets. Conclusion This study shows the effectiveness of CT-derived biomechanical measures in the assessment of airflow obstruction and quality of life in subjects with COPD. CT-derived biomechanical features performed well in assessing the presence and severity of COPD. This study evaluated the performance of computed tomography (CT)-derived biomechanical based features of lung function and the presence and severity of chronic obstructive pulmonary disease (COPD). It performed well when compared to CT-derived density and textural features of lung function and the presence and severity of COPD. A total of 162 subjects (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stages 0–4 and nonsmokers) subjects with CT scan performed at total lung capacity or expiration to functional residual capacity were evaluated. CT-derived biomechanical, density, and textural feature sets were compared to forced expiratory volume in 1 second (FEV1)%, FEV1/forced vital capacity, and total St. George's respiratory questionnaire scores. The ability of these feature sets to assess the presence and severity of COPD was also evaluated. Optimal features are selected by linear forward feature selection and the classification is done using k nearest neighbor learning algorithm. The proposed biomechanical features showed good correlations with the pulmonary function tests and health status metrics. In COPD versus non-COPD classification, biomechanical feature set achieved an area under the curve (AUC) of 0.85 performing well in comparison to density (AUC = 0.83) and texture (AUC = 0.89) feature sets. Classifying the subjects into the severity of GOLD stage using biomechanical features (AUC = 0.81) performed better than the density- and texture-based feature sets, AUC = 0.76 and 0.73, respectively. The biomechanical features performed better alone than in combination with the other two feature sets. This study shows the effectiveness of CT-derived biomechanical measures in the assessment of airflow obstruction and quality of life in subjects with COPD. CT-derived biomechanical features performed well in assessing the presence and severity of COPD." @default.
- W2040388622 created "2016-06-24" @default.
- W2040388622 creator A5011527598 @default.
- W2040388622 creator A5017407513 @default.
- W2040388622 creator A5037794512 @default.
- W2040388622 creator A5066017625 @default.
- W2040388622 date "2013-05-01" @default.
- W2040388622 modified "2023-10-18" @default.
- W2040388622 title "Registration-Based Lung Mechanical Analysis of Chronic Obstructive Pulmonary Disease (COPD) Using a Supervised Machine Learning Framework" @default.
- W2040388622 cites W1824111720 @default.
- W2040388622 cites W1835326614 @default.
- W2040388622 cites W1968683227 @default.
- W2040388622 cites W1970378963 @default.
- W2040388622 cites W1974445091 @default.
- W2040388622 cites W1990658058 @default.
- W2040388622 cites W1991076380 @default.
- W2040388622 cites W1994865124 @default.
- W2040388622 cites W1995554623 @default.
- W2040388622 cites W2008009456 @default.
- W2040388622 cites W2010756758 @default.
- W2040388622 cites W2020133147 @default.
- W2040388622 cites W2035619816 @default.
- W2040388622 cites W2038014686 @default.
- W2040388622 cites W2041165008 @default.
- W2040388622 cites W2044769820 @default.
- W2040388622 cites W2082907106 @default.
- W2040388622 cites W2100907959 @default.
- W2040388622 cites W2102150307 @default.
- W2040388622 cites W2104203111 @default.
- W2040388622 cites W2114200827 @default.
- W2040388622 cites W2117489289 @default.
- W2040388622 cites W2120074781 @default.
- W2040388622 cites W2127666096 @default.
- W2040388622 cites W2133990480 @default.
- W2040388622 cites W2139507936 @default.
- W2040388622 cites W2143167129 @default.
- W2040388622 cites W2153364064 @default.
- W2040388622 cites W2155662634 @default.
- W2040388622 cites W2159592873 @default.
- W2040388622 cites W2161484765 @default.
- W2040388622 cites W2988049583 @default.
- W2040388622 cites W4211263216 @default.
- W2040388622 cites W4244238212 @default.
- W2040388622 doi "https://doi.org/10.1016/j.acra.2013.01.019" @default.
- W2040388622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3644222" @default.
- W2040388622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23570934" @default.
- W2040388622 hasPublicationYear "2013" @default.
- W2040388622 type Work @default.
- W2040388622 sameAs 2040388622 @default.
- W2040388622 citedByCount "48" @default.
- W2040388622 countsByYear W20403886222013 @default.
- W2040388622 countsByYear W20403886222014 @default.
- W2040388622 countsByYear W20403886222015 @default.
- W2040388622 countsByYear W20403886222016 @default.
- W2040388622 countsByYear W20403886222017 @default.
- W2040388622 countsByYear W20403886222018 @default.
- W2040388622 countsByYear W20403886222019 @default.
- W2040388622 countsByYear W20403886222020 @default.
- W2040388622 countsByYear W20403886222021 @default.
- W2040388622 countsByYear W20403886222022 @default.
- W2040388622 countsByYear W20403886222023 @default.
- W2040388622 crossrefType "journal-article" @default.
- W2040388622 hasAuthorship W2040388622A5011527598 @default.
- W2040388622 hasAuthorship W2040388622A5017407513 @default.
- W2040388622 hasAuthorship W2040388622A5037794512 @default.
- W2040388622 hasAuthorship W2040388622A5066017625 @default.
- W2040388622 hasBestOaLocation W20403886222 @default.
- W2040388622 hasConcept C126322002 @default.
- W2040388622 hasConcept C126838900 @default.
- W2040388622 hasConcept C138885662 @default.
- W2040388622 hasConcept C148483581 @default.
- W2040388622 hasConcept C153180895 @default.
- W2040388622 hasConcept C154945302 @default.
- W2040388622 hasConcept C165637977 @default.
- W2040388622 hasConcept C27101514 @default.
- W2040388622 hasConcept C2776164194 @default.
- W2040388622 hasConcept C2776401178 @default.
- W2040388622 hasConcept C2776780178 @default.
- W2040388622 hasConcept C2777104659 @default.
- W2040388622 hasConcept C2777714996 @default.
- W2040388622 hasConcept C2992779976 @default.
- W2040388622 hasConcept C3018587741 @default.
- W2040388622 hasConcept C41008148 @default.
- W2040388622 hasConcept C41895202 @default.
- W2040388622 hasConcept C534529494 @default.
- W2040388622 hasConcept C55520419 @default.
- W2040388622 hasConcept C56283660 @default.
- W2040388622 hasConcept C71924100 @default.
- W2040388622 hasConcept C75603125 @default.
- W2040388622 hasConceptScore W2040388622C126322002 @default.
- W2040388622 hasConceptScore W2040388622C126838900 @default.
- W2040388622 hasConceptScore W2040388622C138885662 @default.
- W2040388622 hasConceptScore W2040388622C148483581 @default.
- W2040388622 hasConceptScore W2040388622C153180895 @default.
- W2040388622 hasConceptScore W2040388622C154945302 @default.
- W2040388622 hasConceptScore W2040388622C165637977 @default.
- W2040388622 hasConceptScore W2040388622C27101514 @default.
- W2040388622 hasConceptScore W2040388622C2776164194 @default.