Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040443290> ?p ?o ?g. }
- W2040443290 endingPage "603" @default.
- W2040443290 startingPage "581" @default.
- W2040443290 abstract "This work addresses the problem of automatic target recognition (ATR) using micro-Doppler information obtained by a low-resolution ground surveillance radar. Gaussian mixture models (GMMs) are used to represent the prior statistical information of threatening ground moving targets such as walking personnel and tracked or wheeled vehicles. A minimum divergence (MD) classification approach with a variety of distance measures is proposed. The proposed MD classification approach is robust with respect to modeling errors and can be efficiently used in low signal-to-noise (SNR) and training data deficient scenarios. The MD classifier is implemented using a variety of computationally efficient approximations of distance measures between GMMs. Performance of the MD classifier was analyzed using collected radar measurements and the influence of different distance measures and their approximations on classification performance is assessed. The proposed MD classifier outperforms the maximum likelihood (ML) classifier in low-SNR and training data deficient scenarios while providing a computationally efficient implementation." @default.
- W2040443290 created "2016-06-24" @default.
- W2040443290 creator A5019132345 @default.
- W2040443290 creator A5024794538 @default.
- W2040443290 date "2012-01-01" @default.
- W2040443290 modified "2023-10-18" @default.
- W2040443290 title "Minimum Divergence Approaches for Robust Classification of Ground Moving Targets" @default.
- W2040443290 cites W12737881 @default.
- W2040443290 cites W1570876803 @default.
- W2040443290 cites W1749494163 @default.
- W2040443290 cites W1814500939 @default.
- W2040443290 cites W1876161723 @default.
- W2040443290 cites W1964370517 @default.
- W2040443290 cites W1965555277 @default.
- W2040443290 cites W1966264494 @default.
- W2040443290 cites W1968956560 @default.
- W2040443290 cites W1971550947 @default.
- W2040443290 cites W1981143845 @default.
- W2040443290 cites W1990708818 @default.
- W2040443290 cites W2005797502 @default.
- W2040443290 cites W2006681603 @default.
- W2040443290 cites W2016102421 @default.
- W2040443290 cites W2032320656 @default.
- W2040443290 cites W2032548678 @default.
- W2040443290 cites W2033178790 @default.
- W2040443290 cites W2033513588 @default.
- W2040443290 cites W2048055082 @default.
- W2040443290 cites W2049559425 @default.
- W2040443290 cites W2052384514 @default.
- W2040443290 cites W2058598591 @default.
- W2040443290 cites W2059393488 @default.
- W2040443290 cites W2079268530 @default.
- W2040443290 cites W2084238990 @default.
- W2040443290 cites W2086188282 @default.
- W2040443290 cites W2093064776 @default.
- W2040443290 cites W2093823111 @default.
- W2040443290 cites W2095055716 @default.
- W2040443290 cites W2096887879 @default.
- W2040443290 cites W2097250649 @default.
- W2040443290 cites W2099111195 @default.
- W2040443290 cites W2117890631 @default.
- W2040443290 cites W2122034173 @default.
- W2040443290 cites W2129448347 @default.
- W2040443290 cites W2132759803 @default.
- W2040443290 cites W2132980680 @default.
- W2040443290 cites W2135692414 @default.
- W2040443290 cites W2138532750 @default.
- W2040443290 cites W2141620354 @default.
- W2040443290 cites W2149197198 @default.
- W2040443290 cites W2149711710 @default.
- W2040443290 cites W2149982434 @default.
- W2040443290 cites W2152321560 @default.
- W2040443290 cites W2153594606 @default.
- W2040443290 cites W2157770256 @default.
- W2040443290 cites W2164018496 @default.
- W2040443290 cites W2169049489 @default.
- W2040443290 cites W2545568782 @default.
- W2040443290 cites W3148595793 @default.
- W2040443290 cites W4230898661 @default.
- W2040443290 doi "https://doi.org/10.1109/taes.2012.6129657" @default.
- W2040443290 hasPublicationYear "2012" @default.
- W2040443290 type Work @default.
- W2040443290 sameAs 2040443290 @default.
- W2040443290 citedByCount "23" @default.
- W2040443290 countsByYear W20404432902013 @default.
- W2040443290 countsByYear W20404432902014 @default.
- W2040443290 countsByYear W20404432902015 @default.
- W2040443290 countsByYear W20404432902016 @default.
- W2040443290 countsByYear W20404432902017 @default.
- W2040443290 countsByYear W20404432902018 @default.
- W2040443290 countsByYear W20404432902019 @default.
- W2040443290 countsByYear W20404432902021 @default.
- W2040443290 countsByYear W20404432902023 @default.
- W2040443290 crossrefType "journal-article" @default.
- W2040443290 hasAuthorship W2040443290A5019132345 @default.
- W2040443290 hasAuthorship W2040443290A5024794538 @default.
- W2040443290 hasConcept C138885662 @default.
- W2040443290 hasConcept C153180895 @default.
- W2040443290 hasConcept C154945302 @default.
- W2040443290 hasConcept C207390915 @default.
- W2040443290 hasConcept C41008148 @default.
- W2040443290 hasConcept C41895202 @default.
- W2040443290 hasConcept C51632099 @default.
- W2040443290 hasConcept C554190296 @default.
- W2040443290 hasConcept C61224824 @default.
- W2040443290 hasConcept C76155785 @default.
- W2040443290 hasConcept C95623464 @default.
- W2040443290 hasConceptScore W2040443290C138885662 @default.
- W2040443290 hasConceptScore W2040443290C153180895 @default.
- W2040443290 hasConceptScore W2040443290C154945302 @default.
- W2040443290 hasConceptScore W2040443290C207390915 @default.
- W2040443290 hasConceptScore W2040443290C41008148 @default.
- W2040443290 hasConceptScore W2040443290C41895202 @default.
- W2040443290 hasConceptScore W2040443290C51632099 @default.
- W2040443290 hasConceptScore W2040443290C554190296 @default.
- W2040443290 hasConceptScore W2040443290C61224824 @default.
- W2040443290 hasConceptScore W2040443290C76155785 @default.
- W2040443290 hasConceptScore W2040443290C95623464 @default.