Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040456280> ?p ?o ?g. }
- W2040456280 endingPage "155" @default.
- W2040456280 startingPage "145" @default.
- W2040456280 abstract "In order to boost the low-temperature activity, a series of Mn–Ce/TiO2-X (X = Hk, N1, N2 and N3) were prepared by adopting incipient wetness technique and investigated for the low-temperature selective catalytic reduction (SCR) of NOx with NH3 at industrial relevant conditions. Prior to that, hydrous TiO2-nanosized samples were synthesized by a deposition technique at constant pH kept in the range of 5–8 and constant temperature 30–80 °C. Titanium oxide hydrates (N1, N2, and N3) possess high specific surface area as 620 m2/g, 457 m2/g, 398 m2/g, whereas TiO2 (Hk) preserves 309 m2/g surface area. In our studies, it was found that the NOx conversion over Mn–Ce/TiO2-Hk with the atomic ratio of Mn/Ce = 5.1 was apparently higher compared with that over Mn–Ce(5.1)/TiO2-X (X = N1, N2, and N3). Our activity results showed that 93.0% NOx conversion was obtained over Mn–Ce(5.1)/TiO2-Hk at 100 °C at a space velocity of 80,000 h−1. Our XRD results suggest that the loading of manganese and ceria onto hydrated titania led to the evolution of diffraction peaks which can be attributed to the formation of crystalline manganese dioxide (MnO2). Among all the catalysts, Mn–Ce/TiO2 N2 showed high intensity diffraction peaks at 2θ = 37.2°, which corresponds to the highly crystalline (1 0 1) plane of manganese dioxide. Once the catalysts with the best performance were identified, experiments were performed with the aim of optimizing these formulations with respect to the dopant and Mn/Ce atomic ratio. Both the ceria co-doping and Mn/Ce atomic ratios played a key role to achieve high NOx conversions at 100 °C. The disappearance or low-temperature shift of ceria reduction peak in H2-TPR indicates the increase of active components’ reduction potential, oxygen vacancies, and the existence of surface-capping oxygen species in Mn–Ce/TiO2 (Hk). The H2-TPR results are in good accordance with our XPS analysis where the relative atomic ratios of Mn4+/Mn3+, Ce3+/Ce4+, and the existence of surface oxygen species greatly enhanced in Mn–Ce/TiO2 (Hk) compared to other catalysts in this work. The relative atomic ratio of Mn4+/Mn3+ (2.19) in Mn–Ce(5.1)/TiO2-Hk calculated from deconvoluted XPS spectra is much higher than that of other catalysts (1.90, 0.89, and 2.03 for N1, N2, and N3, respectively). Moreover, the superior ratio of Ce3+/Ce4+ can generate a charge imbalance, oxygen vacancies, and unsaturated chemical bonds over the catalyst surface to promote the oxidation of NO to NO2. It is highly remarkable to note that the deNOx efficiency of all the prepared catalysts is indeed correlated with the surface concentrations of Ce3+/Ce4+ and Mn4+/Mn3+. NH3-TPD results imply that the co-doping of manganese and ceria onto Hk TiO2 can remarkably improve the acid sites distribution and the concentration of acid sites of the Mn–Ce/TiO2 catalyst. Our investigation results illustrate that the enhancement in reduction potential of active components, broadening of acid sites distribution, and the promotion of Mn4+/Mn3+, Ce3+/Ce4+ ratios including surface labile oxygen and small pore openings seem to be the reason for high deNOx efficiency of Mn–Ce/TiO2 (Hk) at low temperatures." @default.
- W2040456280 created "2016-06-24" @default.
- W2040456280 creator A5008659449 @default.
- W2040456280 creator A5035680093 @default.
- W2040456280 creator A5037614613 @default.
- W2040456280 creator A5042709954 @default.
- W2040456280 creator A5076589217 @default.
- W2040456280 creator A5088684443 @default.
- W2040456280 creator A5089081021 @default.
- W2040456280 date "2015-05-01" @default.
- W2040456280 modified "2023-10-18" @default.
- W2040456280 title "Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions" @default.
- W2040456280 cites W1519974453 @default.
- W2040456280 cites W1534900177 @default.
- W2040456280 cites W1966447459 @default.
- W2040456280 cites W1970030595 @default.
- W2040456280 cites W1973894466 @default.
- W2040456280 cites W1980841385 @default.
- W2040456280 cites W1994659831 @default.
- W2040456280 cites W1995027282 @default.
- W2040456280 cites W2002542924 @default.
- W2040456280 cites W2005289615 @default.
- W2040456280 cites W2007112881 @default.
- W2040456280 cites W2007214419 @default.
- W2040456280 cites W2007300961 @default.
- W2040456280 cites W2008970158 @default.
- W2040456280 cites W2010378486 @default.
- W2040456280 cites W2011693325 @default.
- W2040456280 cites W2020634477 @default.
- W2040456280 cites W2020687561 @default.
- W2040456280 cites W2024069025 @default.
- W2040456280 cites W2036893230 @default.
- W2040456280 cites W2042732470 @default.
- W2040456280 cites W2046181215 @default.
- W2040456280 cites W2056277931 @default.
- W2040456280 cites W2057473593 @default.
- W2040456280 cites W2059510471 @default.
- W2040456280 cites W2068998781 @default.
- W2040456280 cites W2072242817 @default.
- W2040456280 cites W2078784914 @default.
- W2040456280 cites W2084218783 @default.
- W2040456280 cites W2090701754 @default.
- W2040456280 cites W2093507863 @default.
- W2040456280 cites W2094740803 @default.
- W2040456280 cites W2095009881 @default.
- W2040456280 cites W2104890655 @default.
- W2040456280 cites W2115523392 @default.
- W2040456280 cites W2126835124 @default.
- W2040456280 cites W2136034683 @default.
- W2040456280 cites W2158581516 @default.
- W2040456280 cites W2325411101 @default.
- W2040456280 cites W2462799483 @default.
- W2040456280 cites W4231111743 @default.
- W2040456280 cites W4294328715 @default.
- W2040456280 doi "https://doi.org/10.1016/j.jcat.2015.03.002" @default.
- W2040456280 hasPublicationYear "2015" @default.
- W2040456280 type Work @default.
- W2040456280 sameAs 2040456280 @default.
- W2040456280 citedByCount "398" @default.
- W2040456280 countsByYear W20404562802015 @default.
- W2040456280 countsByYear W20404562802016 @default.
- W2040456280 countsByYear W20404562802017 @default.
- W2040456280 countsByYear W20404562802018 @default.
- W2040456280 countsByYear W20404562802019 @default.
- W2040456280 countsByYear W20404562802020 @default.
- W2040456280 countsByYear W20404562802021 @default.
- W2040456280 countsByYear W20404562802022 @default.
- W2040456280 countsByYear W20404562802023 @default.
- W2040456280 crossrefType "journal-article" @default.
- W2040456280 hasAuthorship W2040456280A5008659449 @default.
- W2040456280 hasAuthorship W2040456280A5035680093 @default.
- W2040456280 hasAuthorship W2040456280A5037614613 @default.
- W2040456280 hasAuthorship W2040456280A5042709954 @default.
- W2040456280 hasAuthorship W2040456280A5076589217 @default.
- W2040456280 hasAuthorship W2040456280A5088684443 @default.
- W2040456280 hasAuthorship W2040456280A5089081021 @default.
- W2040456280 hasConcept C105923489 @default.
- W2040456280 hasConcept C113196181 @default.
- W2040456280 hasConcept C118792377 @default.
- W2040456280 hasConcept C147789679 @default.
- W2040456280 hasConcept C15752686 @default.
- W2040456280 hasConcept C161790260 @default.
- W2040456280 hasConcept C178790620 @default.
- W2040456280 hasConcept C179104552 @default.
- W2040456280 hasConcept C185592680 @default.
- W2040456280 hasConcept C191897082 @default.
- W2040456280 hasConcept C192562407 @default.
- W2040456280 hasConcept C203032635 @default.
- W2040456280 hasConcept C2777593239 @default.
- W2040456280 hasConcept C42922719 @default.
- W2040456280 hasConcept C43617362 @default.
- W2040456280 hasConcept C528890316 @default.
- W2040456280 hasConcept C540031477 @default.
- W2040456280 hasConcept C55493867 @default.
- W2040456280 hasConceptScore W2040456280C105923489 @default.
- W2040456280 hasConceptScore W2040456280C113196181 @default.
- W2040456280 hasConceptScore W2040456280C118792377 @default.
- W2040456280 hasConceptScore W2040456280C147789679 @default.