Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040464566> ?p ?o ?g. }
- W2040464566 endingPage "35" @default.
- W2040464566 startingPage "1" @default.
- W2040464566 abstract "The (sequential) algorithm of Multiple Relatively Robust Representations, MRRR, is a more efficient variant of inverse iteration that does not require reorthogonalization. It solves the eigenproblem of an unreduced symmetric tridiagonal matrix T ∈ R n × n at O ( n 2 ) cost. The computed normalized eigenvectors are numerically orthogonal in the sense that the dot product between different vectors is O ( n ϵ), where ϵ refers to the relative machine precision. This article describes the design of ScaLAPACK's parallel MRRR algorithm. One emphasis is on the critical role of the representation tree in achieving both adequate accuracy and parallel scalability. A second point concerns the favorable properties of this code: subset computation, the use of static memory, and scalability. Unlike ScaLAPACK's Divide & Conquer and QR, MRRR can compute subsets of eigenpairs at reduced cost. And in contrast to inverse iterations which can fail, it is guaranteed to produce a satisfactory answer while maintaining memory scalability. ParEig, the parallel MRRR algorithm for PLAPACK, uses dynamic memory allocation. This is avoided by our code at marginal additional cost. We also use a different representation tree criterion that allows for more accurate computation of the eigenvectors but can make parallelization more difficult." @default.
- W2040464566 created "2016-06-24" @default.
- W2040464566 creator A5004327217 @default.
- W2040464566 date "2010-01-01" @default.
- W2040464566 modified "2023-10-18" @default.
- W2040464566 title "ScaLAPACK's MRRR algorithm" @default.
- W2040464566 cites W1970377488 @default.
- W2040464566 cites W1971313434 @default.
- W2040464566 cites W1974699664 @default.
- W2040464566 cites W1983669929 @default.
- W2040464566 cites W1985095956 @default.
- W2040464566 cites W1988425770 @default.
- W2040464566 cites W1989396323 @default.
- W2040464566 cites W1998134546 @default.
- W2040464566 cites W2001839700 @default.
- W2040464566 cites W2002257715 @default.
- W2040464566 cites W2007244665 @default.
- W2040464566 cites W2007395042 @default.
- W2040464566 cites W2018933986 @default.
- W2040464566 cites W2019515337 @default.
- W2040464566 cites W2029566311 @default.
- W2040464566 cites W2032069142 @default.
- W2040464566 cites W2037798332 @default.
- W2040464566 cites W2038469228 @default.
- W2040464566 cites W2041591938 @default.
- W2040464566 cites W2043994139 @default.
- W2040464566 cites W2044540053 @default.
- W2040464566 cites W2045073555 @default.
- W2040464566 cites W2050134679 @default.
- W2040464566 cites W2051142108 @default.
- W2040464566 cites W2059586807 @default.
- W2040464566 cites W2065690018 @default.
- W2040464566 cites W2070596272 @default.
- W2040464566 cites W2075385261 @default.
- W2040464566 cites W2075385768 @default.
- W2040464566 cites W2077166865 @default.
- W2040464566 cites W2077270836 @default.
- W2040464566 cites W2081669410 @default.
- W2040464566 cites W2083154122 @default.
- W2040464566 cites W2086160340 @default.
- W2040464566 cites W2092158674 @default.
- W2040464566 cites W2098432400 @default.
- W2040464566 cites W2107785791 @default.
- W2040464566 cites W2141653127 @default.
- W2040464566 cites W2149381887 @default.
- W2040464566 cites W2162370381 @default.
- W2040464566 cites W2162598472 @default.
- W2040464566 cites W2163901420 @default.
- W2040464566 cites W2230728100 @default.
- W2040464566 cites W4229666556 @default.
- W2040464566 cites W4239025233 @default.
- W2040464566 cites W52611266 @default.
- W2040464566 doi "https://doi.org/10.1145/1644001.1644002" @default.
- W2040464566 hasPublicationYear "2010" @default.
- W2040464566 type Work @default.
- W2040464566 sameAs 2040464566 @default.
- W2040464566 citedByCount "27" @default.
- W2040464566 countsByYear W20404645662012 @default.
- W2040464566 countsByYear W20404645662013 @default.
- W2040464566 countsByYear W20404645662014 @default.
- W2040464566 countsByYear W20404645662015 @default.
- W2040464566 countsByYear W20404645662016 @default.
- W2040464566 countsByYear W20404645662017 @default.
- W2040464566 countsByYear W20404645662018 @default.
- W2040464566 countsByYear W20404645662019 @default.
- W2040464566 countsByYear W20404645662020 @default.
- W2040464566 countsByYear W20404645662022 @default.
- W2040464566 crossrefType "journal-article" @default.
- W2040464566 hasAuthorship W2040464566A5004327217 @default.
- W2040464566 hasBestOaLocation W20404645662 @default.
- W2040464566 hasConcept C11413529 @default.
- W2040464566 hasConcept C121332964 @default.
- W2040464566 hasConcept C133875982 @default.
- W2040464566 hasConcept C158693339 @default.
- W2040464566 hasConcept C173608175 @default.
- W2040464566 hasConcept C17744445 @default.
- W2040464566 hasConcept C188060507 @default.
- W2040464566 hasConcept C199539241 @default.
- W2040464566 hasConcept C207467116 @default.
- W2040464566 hasConcept C2524010 @default.
- W2040464566 hasConcept C2776359362 @default.
- W2040464566 hasConcept C33923547 @default.
- W2040464566 hasConcept C41008148 @default.
- W2040464566 hasConcept C45374587 @default.
- W2040464566 hasConcept C48044578 @default.
- W2040464566 hasConcept C51647924 @default.
- W2040464566 hasConcept C62520636 @default.
- W2040464566 hasConcept C77088390 @default.
- W2040464566 hasConcept C91481028 @default.
- W2040464566 hasConcept C94625758 @default.
- W2040464566 hasConceptScore W2040464566C11413529 @default.
- W2040464566 hasConceptScore W2040464566C121332964 @default.
- W2040464566 hasConceptScore W2040464566C133875982 @default.
- W2040464566 hasConceptScore W2040464566C158693339 @default.
- W2040464566 hasConceptScore W2040464566C173608175 @default.
- W2040464566 hasConceptScore W2040464566C17744445 @default.
- W2040464566 hasConceptScore W2040464566C188060507 @default.
- W2040464566 hasConceptScore W2040464566C199539241 @default.