Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040473017> ?p ?o ?g. }
- W2040473017 endingPage "117" @default.
- W2040473017 startingPage "97" @default.
- W2040473017 abstract "Diagnoses of heart diseases can be done effectively on long term recordings of ECG signals that preserve the signals’ morphologies. In these cases, the volume of the ECG data produced by the monitoring systems grows significantly. To make the mobile healthcare possible, the need for efficient ECG signal compression algorithms to store and/or transmit the signal efficiently has been rising exponentially. Currently, ECG signal is acquired at Nyquist rate or higher, thus introducing redundancies between adjacent heartbeats due to its quasi-periodic structure. Existing compression methods remove these redundancies by achieving compression and facilitate transmission of the patient’s imperative information. Based on the fact that these signals can be approximated by a linear combination of a few coefficients taken from different basis, an alternative new compression scheme based on Compressive Sensing (CS) has been proposed. CS provides a new approach concerned with signal compression and recovery by exploiting the fact that ECG signal can be reconstructed by acquiring a relatively small number of samples in the “sparse” domains through well-developed optimization procedures. In this paper, a single-lead ECG compression method has been proposed based on improving the signal sparisty through the extraction of the signal significant features. The proposed method starts with a preprocessing stage that detects the peaks and periods of the Q, R and S waves of each beat. Then, the QRS-complex for each signal beat is estimated. The estimated QRS-complexes are subtracted from the original ECG signal and the resulting error signal is compressed using the CS technique. Throughout this process, DWT sparsifying dictionaries have been adopted. The performance of the proposed algorithm, in terms of the reconstructed signal quality and compression ratio, is evaluated by adopting DWT spatial domain basis applied to ECG records extracted from the MIT-BIH Arrhythmia Database. The results indicate that average compression ratio of 11:1 with PRD1 = 1.2% are obtained. Moreover, the quality of the retrieved signal is guaranteed and the compression ratio achieved is an improvement over those obtained by previously reported algorithms. Simulation results suggest that CS should be considered as an acceptable methodology for ECG compression." @default.
- W2040473017 created "2016-06-24" @default.
- W2040473017 creator A5003490280 @default.
- W2040473017 creator A5026469069 @default.
- W2040473017 creator A5073175295 @default.
- W2040473017 date "2015-01-01" @default.
- W2040473017 modified "2023-10-18" @default.
- W2040473017 title "Compression of ECG Signal Based on Compressive Sensing and the Extraction of Significant Features" @default.
- W2040473017 cites W1485022561 @default.
- W2040473017 cites W2005089986 @default.
- W2040473017 cites W2006467905 @default.
- W2040473017 cites W2014168260 @default.
- W2040473017 cites W2028349405 @default.
- W2040473017 cites W2028781966 @default.
- W2040473017 cites W2039939700 @default.
- W2040473017 cites W2055718058 @default.
- W2040473017 cites W2064030771 @default.
- W2040473017 cites W2078204800 @default.
- W2040473017 cites W2090778665 @default.
- W2040473017 cites W2104655872 @default.
- W2040473017 cites W2110140246 @default.
- W2040473017 cites W2111414067 @default.
- W2040473017 cites W2115340664 @default.
- W2040473017 cites W2117736816 @default.
- W2040473017 cites W2119667497 @default.
- W2040473017 cites W2128659236 @default.
- W2040473017 cites W2129131372 @default.
- W2040473017 cites W2129638195 @default.
- W2040473017 cites W2134207998 @default.
- W2040473017 cites W2145096794 @default.
- W2040473017 cites W2151693816 @default.
- W2040473017 cites W2154483232 @default.
- W2040473017 cites W2169382889 @default.
- W2040473017 cites W4250589301 @default.
- W2040473017 cites W4250955649 @default.
- W2040473017 doi "https://doi.org/10.4236/ijcns.2015.85013" @default.
- W2040473017 hasPublicationYear "2015" @default.
- W2040473017 type Work @default.
- W2040473017 sameAs 2040473017 @default.
- W2040473017 citedByCount "22" @default.
- W2040473017 countsByYear W20404730172016 @default.
- W2040473017 countsByYear W20404730172017 @default.
- W2040473017 countsByYear W20404730172018 @default.
- W2040473017 countsByYear W20404730172019 @default.
- W2040473017 countsByYear W20404730172020 @default.
- W2040473017 countsByYear W20404730172021 @default.
- W2040473017 countsByYear W20404730172022 @default.
- W2040473017 countsByYear W20404730172023 @default.
- W2040473017 crossrefType "journal-article" @default.
- W2040473017 hasAuthorship W2040473017A5003490280 @default.
- W2040473017 hasAuthorship W2040473017A5026469069 @default.
- W2040473017 hasAuthorship W2040473017A5073175295 @default.
- W2040473017 hasBestOaLocation W20404730171 @default.
- W2040473017 hasConcept C104267543 @default.
- W2040473017 hasConcept C106131492 @default.
- W2040473017 hasConcept C111773187 @default.
- W2040473017 hasConcept C121332964 @default.
- W2040473017 hasConcept C124851039 @default.
- W2040473017 hasConcept C127413603 @default.
- W2040473017 hasConcept C140779682 @default.
- W2040473017 hasConcept C153180895 @default.
- W2040473017 hasConcept C154945302 @default.
- W2040473017 hasConcept C159985019 @default.
- W2040473017 hasConcept C164705383 @default.
- W2040473017 hasConcept C171146098 @default.
- W2040473017 hasConcept C180016635 @default.
- W2040473017 hasConcept C189809214 @default.
- W2040473017 hasConcept C192562407 @default.
- W2040473017 hasConcept C199360897 @default.
- W2040473017 hasConcept C24890656 @default.
- W2040473017 hasConcept C25797200 @default.
- W2040473017 hasConcept C2778192920 @default.
- W2040473017 hasConcept C2779843651 @default.
- W2040473017 hasConcept C31972630 @default.
- W2040473017 hasConcept C34736171 @default.
- W2040473017 hasConcept C41008148 @default.
- W2040473017 hasConcept C511840579 @default.
- W2040473017 hasConcept C65914096 @default.
- W2040473017 hasConcept C71924100 @default.
- W2040473017 hasConcept C78548338 @default.
- W2040473017 hasConcept C84462506 @default.
- W2040473017 hasConcept C9390403 @default.
- W2040473017 hasConceptScore W2040473017C104267543 @default.
- W2040473017 hasConceptScore W2040473017C106131492 @default.
- W2040473017 hasConceptScore W2040473017C111773187 @default.
- W2040473017 hasConceptScore W2040473017C121332964 @default.
- W2040473017 hasConceptScore W2040473017C124851039 @default.
- W2040473017 hasConceptScore W2040473017C127413603 @default.
- W2040473017 hasConceptScore W2040473017C140779682 @default.
- W2040473017 hasConceptScore W2040473017C153180895 @default.
- W2040473017 hasConceptScore W2040473017C154945302 @default.
- W2040473017 hasConceptScore W2040473017C159985019 @default.
- W2040473017 hasConceptScore W2040473017C164705383 @default.
- W2040473017 hasConceptScore W2040473017C171146098 @default.
- W2040473017 hasConceptScore W2040473017C180016635 @default.
- W2040473017 hasConceptScore W2040473017C189809214 @default.
- W2040473017 hasConceptScore W2040473017C192562407 @default.
- W2040473017 hasConceptScore W2040473017C199360897 @default.