Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040477148> ?p ?o ?g. }
- W2040477148 endingPage "1959" @default.
- W2040477148 startingPage "1957" @default.
- W2040477148 abstract "To the Editor: Salmonella enterica serotype Typhimurium is one of the most common causes of bloodstream infection in sub-Saharan Africa (1). Among adults, the principal risk factor for invasive nontyphoidal Salmonella (iNTS) disease is advanced HIV infection; up to 44% of HIV-infected patients experience bacteremic recurrence through recrudescence of the original infection (2,3). Epidemics of iNTS disease in sub-Saharan Africa have been associated with a novel genotype of S. enterica ser. Typhimurium of multilocus sequence type (ST) 313 that is rarely seen outside the region and is associated with multidrug resistance (MDR) to chloramphenicol, cotrimoxazole, and ampicillin (4,5). As a consequence, ceftriaxone has become a key agent in the empirical management of nonfocal sepsis in Malawi (6).In March 2009, a 40-year-old HIV-infected and antiretroviral therapy–naive woman sought care in Blantyre, Malawi, with an MDR S. enterica ser. Typhimurium bloodstream infection. She was treated with ceftriaxone (2 g intravenously once daily) and discharged with oral ciprofloxacin (500 mg twice daily) for 10 days. She was readmitted 1 month later with recurrent fever. At this time, she had an MDR S. enterica ser. Typhimurium bloodstream infection with additional resistance to ceftriaxone and ciprofloxacin. In the absence of a locally available effective antimicrobial drug, she was treated with ceftriaxone, gentamicin, and high-dose ciprofloxacin but died shortly thereafter.To help clarify how this extended MDR S. enterica ser. Typhimurium emerged, we determined the molecular mechanisms underpinning this disturbing pattern of antimicrobial resistance (Technical Appendix). We conducted phenotypic drug susceptibility testing by disk diffusion on S. enterica ser. Typhimurium strains A54285 (initial presentation) and {type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560 (recurrence); both isolates were resistant to ampicillin, chloramphenicol, and cotrimoxazole, but {type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560 exhibited additional resistance to ceftriaxone, ciprofloxacin, and tetracycline.Paired-end sequencing of isolates A54285 (European Nucleotide Archive [ENA] accession number ERS035867) and {type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560 (ENA accession no. ERS035866) that were cultured 1 month apart showed no differences between the conserved regions of these genomes (Figure). The similarity of these S. enterica ser. Typhimurium genomes strongly suggests that this recrudescence occurred after incomplete clearance of the first infection; although re-infection from the same source is unlikely, it cannot be excluded. Comparison of the accessory genomes, however, showed an additional 300 kb DNA in {type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560.FigureMidpoint-rooted phylogenetic tree of published whole-genome sequence data from {type:entrez-nucleotide,attrs:{text:D23580,term_id:427513,term_text:D23580}}D23580-like Salmonella enterica serotype Typhimurium sequence type 313s from Malawi ...Plasmid extraction and gel electrophoresis of genomic DNA identified a plasmid migrating in the gel to a position approximately equivalent to 120 kb, the size of ST313 virulence plasmid pSLT-BT in both strains, but no 300-kb plasmid was visualized in the ceftriaxone- and ciprofloxacin-resistant strain ({type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560, data not shown), possibly because of the difficulty large plasmids have entering standard 1% agarose gels. However, ceftriaxone resistance was mobilized to Escherichia coli by conjugation at a frequency 6.5 × 10−2 transconjugants per donor at 26°C. This frequency dropped dramatically to ≈1 × 10−7 transconjugants per donor when conjugation was performed at 37°C. The presence of an IncHI2 plasmid in the transconjugants was confirmed by PCR for the IncHI2 region (7), and drug susceptibility testing confirmed that transconjugant clones acquired resistance to ceftriaxone, ciprofloxacin, and tetracycline. These data confirm the presence of an extended-spectrum β-lactamase (ESBL)–producing IncHI2 plasmid in strain {type:entrez-protein,attrs:{text:A54560,term_id:627945,term_text:pir||A54560}}A54560 that is capable of conjugative transfer and suggest that the plasmid might have been acquired by residual index strain within the patient by transfer from an unknown donor bacterium. Partial decolonization of the patient’s gastrointestinal tract by ceftriaxone and fluoroquinolone antimicrobial therapy might have rendered it receptive to colonization by ESBL-producing bacteria, which we hypothesize donated the plasmid to the residual index strain.The transconjugant plasmid DNA was sequenced by using the PacBio RSII platform (Pacific Biosciences, Menlo Park, CA, USA; http://www.pacificbiosciences.com), which assembled as a single contiguous sequence of 309,406 bp, designated pSTm-BTCR (Technical Appendix Figure, ENA accession no. {type:entrez-nucleotide,attrs:{text:LK056646,term_id:671685546,term_text:LK056646}}LK056646). We identified 331 predicted coding sequences, including 109 genes required for replication and transfer and 61 genes predicted to be associated with metabolism, membranes, virulence, antimicrobial resistance, and a toxin/antitoxin addiction system. We found an additional 160 predicted, hypothetical genes. Fifteen putative antimicrobial resistance genes were identified, predicted to encode resistance to; tetracycline (tetA(C), tetR(C)), β-lactams (blaCTX-M15, blaTEM-1b, blaOXA-30), chloramphenicol (catB3, catA1), aminoglycosides (strA, strB, aadA1, aacA4, aacC3), ciprofloxacin (qnrB1), ulfonamiides (sul2), and trimethoprim (dfrA14).In our experience, ESBL and fluoroquinolone-resistant iNTS remain extremely uncommon in Blantyre, Malawi. This is surprising because diverse ESBL genotypes were observed in other members of Enterobacteriaceae in Blantyre within a year after ceftriaxone came into common use locally (8). That IncHI2 plasmids transfer most efficiently at temperatures <30°C (9), a lower temperature than in the human gastrointestinal tract, might explain why the acquisition of ESBL-producing enzymes through IncHI2 plasmids has not been commonly observed within patients with recurrent iNTS disease in this setting. However, rates of transfer might differ when bacteria are growing in the intestine.The spread of mobile genetic elements that confer antimicrobial resistance among gram-negative organisms is of considerable concern. Wide dissemination of this strain or the IncHI2 (pSTm-BTCR) plasmid among other salmonellae in sub-Saharan Africa would rapidly render iNTS effectively untreatable with currently available antibacterial drugs.Technical Appendix: Detailed methods and plasmid map of pSTm-BTCR.Click here to view.(139K, pdf)" @default.
- W2040477148 created "2016-06-24" @default.
- W2040477148 creator A5005074968 @default.
- W2040477148 creator A5020409024 @default.
- W2040477148 creator A5032122956 @default.
- W2040477148 creator A5033785570 @default.
- W2040477148 creator A5036500915 @default.
- W2040477148 creator A5044677354 @default.
- W2040477148 creator A5049711684 @default.
- W2040477148 creator A5059641375 @default.
- W2040477148 creator A5065429571 @default.
- W2040477148 creator A5075883457 @default.
- W2040477148 creator A5083942740 @default.
- W2040477148 creator A5089875643 @default.
- W2040477148 date "2014-11-01" @default.
- W2040477148 modified "2023-09-27" @default.
- W2040477148 title "Drug Resistance in<i>Salmonella enterica</i>ser. Typhimurium Bloodstream Infection, Malawi" @default.
- W2040477148 cites W1965686461 @default.
- W2040477148 cites W1989549652 @default.
- W2040477148 cites W1991860284 @default.
- W2040477148 cites W2072692157 @default.
- W2040477148 cites W2105937538 @default.
- W2040477148 cites W2132530250 @default.
- W2040477148 cites W2150435319 @default.
- W2040477148 cites W2153955036 @default.
- W2040477148 doi "https://doi.org/10.3201/eid2011.141175" @default.
- W2040477148 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4214322" @default.
- W2040477148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25340988" @default.
- W2040477148 hasPublicationYear "2014" @default.
- W2040477148 type Work @default.
- W2040477148 sameAs 2040477148 @default.
- W2040477148 citedByCount "53" @default.
- W2040477148 countsByYear W20404771482015 @default.
- W2040477148 countsByYear W20404771482016 @default.
- W2040477148 countsByYear W20404771482017 @default.
- W2040477148 countsByYear W20404771482018 @default.
- W2040477148 countsByYear W20404771482019 @default.
- W2040477148 countsByYear W20404771482020 @default.
- W2040477148 countsByYear W20404771482021 @default.
- W2040477148 countsByYear W20404771482022 @default.
- W2040477148 countsByYear W20404771482023 @default.
- W2040477148 crossrefType "journal-article" @default.
- W2040477148 hasAuthorship W2040477148A5005074968 @default.
- W2040477148 hasAuthorship W2040477148A5020409024 @default.
- W2040477148 hasAuthorship W2040477148A5032122956 @default.
- W2040477148 hasAuthorship W2040477148A5033785570 @default.
- W2040477148 hasAuthorship W2040477148A5036500915 @default.
- W2040477148 hasAuthorship W2040477148A5044677354 @default.
- W2040477148 hasAuthorship W2040477148A5049711684 @default.
- W2040477148 hasAuthorship W2040477148A5059641375 @default.
- W2040477148 hasAuthorship W2040477148A5065429571 @default.
- W2040477148 hasAuthorship W2040477148A5075883457 @default.
- W2040477148 hasAuthorship W2040477148A5083942740 @default.
- W2040477148 hasAuthorship W2040477148A5089875643 @default.
- W2040477148 hasBestOaLocation W20404771481 @default.
- W2040477148 hasConcept C114851261 @default.
- W2040477148 hasConcept C159047783 @default.
- W2040477148 hasConcept C2779607309 @default.
- W2040477148 hasConcept C2780035454 @default.
- W2040477148 hasConcept C2781065037 @default.
- W2040477148 hasConcept C3018946976 @default.
- W2040477148 hasConcept C501593827 @default.
- W2040477148 hasConcept C523546767 @default.
- W2040477148 hasConcept C54355233 @default.
- W2040477148 hasConcept C71924100 @default.
- W2040477148 hasConcept C86803240 @default.
- W2040477148 hasConcept C89423630 @default.
- W2040477148 hasConcept C94665300 @default.
- W2040477148 hasConcept C98274493 @default.
- W2040477148 hasConceptScore W2040477148C114851261 @default.
- W2040477148 hasConceptScore W2040477148C159047783 @default.
- W2040477148 hasConceptScore W2040477148C2779607309 @default.
- W2040477148 hasConceptScore W2040477148C2780035454 @default.
- W2040477148 hasConceptScore W2040477148C2781065037 @default.
- W2040477148 hasConceptScore W2040477148C3018946976 @default.
- W2040477148 hasConceptScore W2040477148C501593827 @default.
- W2040477148 hasConceptScore W2040477148C523546767 @default.
- W2040477148 hasConceptScore W2040477148C54355233 @default.
- W2040477148 hasConceptScore W2040477148C71924100 @default.
- W2040477148 hasConceptScore W2040477148C86803240 @default.
- W2040477148 hasConceptScore W2040477148C89423630 @default.
- W2040477148 hasConceptScore W2040477148C94665300 @default.
- W2040477148 hasConceptScore W2040477148C98274493 @default.
- W2040477148 hasIssue "11" @default.
- W2040477148 hasLocation W20404771481 @default.
- W2040477148 hasLocation W20404771482 @default.
- W2040477148 hasLocation W20404771483 @default.
- W2040477148 hasLocation W20404771484 @default.
- W2040477148 hasLocation W20404771485 @default.
- W2040477148 hasLocation W20404771486 @default.
- W2040477148 hasLocation W20404771487 @default.
- W2040477148 hasOpenAccess W2040477148 @default.
- W2040477148 hasPrimaryLocation W20404771481 @default.
- W2040477148 hasRelatedWork W1974842464 @default.
- W2040477148 hasRelatedWork W2065847230 @default.
- W2040477148 hasRelatedWork W2121030540 @default.
- W2040477148 hasRelatedWork W2171045754 @default.
- W2040477148 hasRelatedWork W2185595800 @default.