Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040486503> ?p ?o ?g. }
- W2040486503 endingPage "5425" @default.
- W2040486503 startingPage "5383" @default.
- W2040486503 abstract "The paper presents a modular formulation and computational implementation of a class of anisotropic plasticity models at finite strains based on incremental minimization principles. The modular kinematic setting consists of a constitutive model in the logarithmic strain space that is framed by a purely geometric pre- and postprocessing. On the theoretical side, the point of departure is an a priori six-dimensional approach to finite plasticity based on the notion of a plastic metric. In a first step, a geometric preprocessor defines a total and a plastic logarithmic strain measure obtained from the current and the plastic metrics, respectively. In a second step, these strains enter in an additive format a constitutive model of anisotropic plasticity that may have a structure identical to the geometrically linear theory. The model defines the stresses and consistent tangents work-conjugate to the logarithmic strain measure. In a third step these objects of the logarithmic space are then mapped back to nominal, Lagrangian or Eulerian objects by a geometric postprocessor. This geometric three-step-approach defines a broad class of anisotropic models of finite plasticity directly related to counterparts of the geometrically linear theory. It is specified to a model problem of anisotropic metal plasticity. On the computational side we develop an incremental variational formulation of the above outlined constitutive structure where a quasi-hyperelastic stress potential is obtained from a local constitutive minimization problem with respect to the internal variables. It is shown that this minimization problem is exclusively restricted to the logarithmic strain space in a structure identical to the small-strain theory. The minimization problem determines the internal state of the material for finite increments of time. We develop a discrete formulation in terms of just one scalar parameter for the amount of incremental flow. The existence of the incremental stress potential provides a natural basis for the definition of the geometric postprocessor based on function evaluations. Furthermore, the global initial-boundary-value-problem of the elastic–plastic solid appears in the incremental setting as an energy minimization problem. Numerical examples show that the results obtained are surprisingly close to those obtained by a reference framework of multiplicative plasticity." @default.
- W2040486503 created "2016-06-24" @default.
- W2040486503 creator A5019147062 @default.
- W2040486503 creator A5040797964 @default.
- W2040486503 creator A5059590955 @default.
- W2040486503 date "2002-11-01" @default.
- W2040486503 modified "2023-10-14" @default.
- W2040486503 title "Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials" @default.
- W2040486503 cites W117927 @default.
- W2040486503 cites W131810239 @default.
- W2040486503 cites W1495515800 @default.
- W2040486503 cites W1574216888 @default.
- W2040486503 cites W192966477 @default.
- W2040486503 cites W1966882731 @default.
- W2040486503 cites W1967703914 @default.
- W2040486503 cites W1972209341 @default.
- W2040486503 cites W1976207020 @default.
- W2040486503 cites W1977803348 @default.
- W2040486503 cites W1990733884 @default.
- W2040486503 cites W1991504889 @default.
- W2040486503 cites W1998169744 @default.
- W2040486503 cites W2008390705 @default.
- W2040486503 cites W2019070244 @default.
- W2040486503 cites W2020077459 @default.
- W2040486503 cites W2022812607 @default.
- W2040486503 cites W2024448831 @default.
- W2040486503 cites W2034348761 @default.
- W2040486503 cites W2034771336 @default.
- W2040486503 cites W2034810815 @default.
- W2040486503 cites W2041008991 @default.
- W2040486503 cites W2043415552 @default.
- W2040486503 cites W2047488451 @default.
- W2040486503 cites W2049508106 @default.
- W2040486503 cites W2051331055 @default.
- W2040486503 cites W2052383254 @default.
- W2040486503 cites W2057022818 @default.
- W2040486503 cites W2057796127 @default.
- W2040486503 cites W2058205997 @default.
- W2040486503 cites W2061746607 @default.
- W2040486503 cites W2063293861 @default.
- W2040486503 cites W2063751888 @default.
- W2040486503 cites W2067898272 @default.
- W2040486503 cites W2072176366 @default.
- W2040486503 cites W2072660839 @default.
- W2040486503 cites W2080978280 @default.
- W2040486503 cites W2084352516 @default.
- W2040486503 cites W2086481401 @default.
- W2040486503 cites W2088035849 @default.
- W2040486503 cites W2088703872 @default.
- W2040486503 cites W2089891654 @default.
- W2040486503 cites W2129574380 @default.
- W2040486503 cites W2143262302 @default.
- W2040486503 cites W2147280642 @default.
- W2040486503 cites W2162884561 @default.
- W2040486503 cites W2167566096 @default.
- W2040486503 cites W4233567547 @default.
- W2040486503 cites W60166919 @default.
- W2040486503 doi "https://doi.org/10.1016/s0045-7825(02)00438-3" @default.
- W2040486503 hasPublicationYear "2002" @default.
- W2040486503 type Work @default.
- W2040486503 sameAs 2040486503 @default.
- W2040486503 citedByCount "199" @default.
- W2040486503 countsByYear W20404865032012 @default.
- W2040486503 countsByYear W20404865032013 @default.
- W2040486503 countsByYear W20404865032014 @default.
- W2040486503 countsByYear W20404865032015 @default.
- W2040486503 countsByYear W20404865032016 @default.
- W2040486503 countsByYear W20404865032017 @default.
- W2040486503 countsByYear W20404865032018 @default.
- W2040486503 countsByYear W20404865032019 @default.
- W2040486503 countsByYear W20404865032020 @default.
- W2040486503 countsByYear W20404865032021 @default.
- W2040486503 countsByYear W20404865032022 @default.
- W2040486503 countsByYear W20404865032023 @default.
- W2040486503 crossrefType "journal-article" @default.
- W2040486503 hasAuthorship W2040486503A5019147062 @default.
- W2040486503 hasAuthorship W2040486503A5040797964 @default.
- W2040486503 hasAuthorship W2040486503A5059590955 @default.
- W2040486503 hasConcept C121332964 @default.
- W2040486503 hasConcept C134306372 @default.
- W2040486503 hasConcept C135628077 @default.
- W2040486503 hasConcept C138187205 @default.
- W2040486503 hasConcept C157157409 @default.
- W2040486503 hasConcept C202973686 @default.
- W2040486503 hasConcept C2524010 @default.
- W2040486503 hasConcept C2781314585 @default.
- W2040486503 hasConcept C28826006 @default.
- W2040486503 hasConcept C33923547 @default.
- W2040486503 hasConcept C39927690 @default.
- W2040486503 hasConcept C79186407 @default.
- W2040486503 hasConcept C97355855 @default.
- W2040486503 hasConceptScore W2040486503C121332964 @default.
- W2040486503 hasConceptScore W2040486503C134306372 @default.
- W2040486503 hasConceptScore W2040486503C135628077 @default.
- W2040486503 hasConceptScore W2040486503C138187205 @default.
- W2040486503 hasConceptScore W2040486503C157157409 @default.
- W2040486503 hasConceptScore W2040486503C202973686 @default.
- W2040486503 hasConceptScore W2040486503C2524010 @default.