Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040558735> ?p ?o ?g. }
- W2040558735 endingPage "1569" @default.
- W2040558735 startingPage "1545" @default.
- W2040558735 abstract "Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0Dt2τu+∑j=1dcj[ajDxj2μju]+γu=f, where 2τ, μj∈(0,1), in a (1+d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ=1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time- and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional problems." @default.
- W2040558735 created "2016-06-24" @default.
- W2040558735 creator A5009658255 @default.
- W2040558735 creator A5051268633 @default.
- W2040558735 creator A5091196582 @default.
- W2040558735 date "2015-01-01" @default.
- W2040558735 modified "2023-10-16" @default.
- W2040558735 title "A unified Petrov–Galerkin spectral method for fractional PDEs" @default.
- W2040558735 cites W1967595729 @default.
- W2040558735 cites W1969312973 @default.
- W2040558735 cites W1974267666 @default.
- W2040558735 cites W1981384091 @default.
- W2040558735 cites W1991982189 @default.
- W2040558735 cites W2000659785 @default.
- W2040558735 cites W2016660803 @default.
- W2040558735 cites W2018637913 @default.
- W2040558735 cites W2025020152 @default.
- W2040558735 cites W2030146312 @default.
- W2040558735 cites W2040329976 @default.
- W2040558735 cites W2056829543 @default.
- W2040558735 cites W2057127233 @default.
- W2040558735 cites W2062517214 @default.
- W2040558735 cites W2062650267 @default.
- W2040558735 cites W2065254635 @default.
- W2040558735 cites W2085454505 @default.
- W2040558735 cites W2088216803 @default.
- W2040558735 cites W2091740033 @default.
- W2040558735 cites W2093225350 @default.
- W2040558735 cites W2099111135 @default.
- W2040558735 cites W2110504259 @default.
- W2040558735 cites W2111271983 @default.
- W2040558735 cites W2118288723 @default.
- W2040558735 cites W2121338159 @default.
- W2040558735 cites W2124927773 @default.
- W2040558735 cites W2125366357 @default.
- W2040558735 cites W2164362572 @default.
- W2040558735 cites W2165076033 @default.
- W2040558735 doi "https://doi.org/10.1016/j.cma.2014.10.051" @default.
- W2040558735 hasPublicationYear "2015" @default.
- W2040558735 type Work @default.
- W2040558735 sameAs 2040558735 @default.
- W2040558735 citedByCount "89" @default.
- W2040558735 countsByYear W20405587352015 @default.
- W2040558735 countsByYear W20405587352016 @default.
- W2040558735 countsByYear W20405587352017 @default.
- W2040558735 countsByYear W20405587352018 @default.
- W2040558735 countsByYear W20405587352019 @default.
- W2040558735 countsByYear W20405587352020 @default.
- W2040558735 countsByYear W20405587352021 @default.
- W2040558735 countsByYear W20405587352022 @default.
- W2040558735 countsByYear W20405587352023 @default.
- W2040558735 crossrefType "journal-article" @default.
- W2040558735 hasAuthorship W2040558735A5009658255 @default.
- W2040558735 hasAuthorship W2040558735A5051268633 @default.
- W2040558735 hasAuthorship W2040558735A5091196582 @default.
- W2040558735 hasBestOaLocation W20405587351 @default.
- W2040558735 hasConcept C121332964 @default.
- W2040558735 hasConcept C126255220 @default.
- W2040558735 hasConcept C128803854 @default.
- W2040558735 hasConcept C134306372 @default.
- W2040558735 hasConcept C135628077 @default.
- W2040558735 hasConcept C158693339 @default.
- W2040558735 hasConcept C182310444 @default.
- W2040558735 hasConcept C23463724 @default.
- W2040558735 hasConcept C2778540877 @default.
- W2040558735 hasConcept C2778770139 @default.
- W2040558735 hasConcept C28826006 @default.
- W2040558735 hasConcept C33923547 @default.
- W2040558735 hasConcept C62520636 @default.
- W2040558735 hasConcept C93779851 @default.
- W2040558735 hasConcept C97355855 @default.
- W2040558735 hasConceptScore W2040558735C121332964 @default.
- W2040558735 hasConceptScore W2040558735C126255220 @default.
- W2040558735 hasConceptScore W2040558735C128803854 @default.
- W2040558735 hasConceptScore W2040558735C134306372 @default.
- W2040558735 hasConceptScore W2040558735C135628077 @default.
- W2040558735 hasConceptScore W2040558735C158693339 @default.
- W2040558735 hasConceptScore W2040558735C182310444 @default.
- W2040558735 hasConceptScore W2040558735C23463724 @default.
- W2040558735 hasConceptScore W2040558735C2778540877 @default.
- W2040558735 hasConceptScore W2040558735C2778770139 @default.
- W2040558735 hasConceptScore W2040558735C28826006 @default.
- W2040558735 hasConceptScore W2040558735C33923547 @default.
- W2040558735 hasConceptScore W2040558735C62520636 @default.
- W2040558735 hasConceptScore W2040558735C93779851 @default.
- W2040558735 hasConceptScore W2040558735C97355855 @default.
- W2040558735 hasFunder F4320306076 @default.
- W2040558735 hasFunder F4320306084 @default.
- W2040558735 hasFunder F4320332201 @default.
- W2040558735 hasLocation W20405587351 @default.
- W2040558735 hasLocation W20405587352 @default.
- W2040558735 hasOpenAccess W2040558735 @default.
- W2040558735 hasPrimaryLocation W20405587351 @default.
- W2040558735 hasRelatedWork W1975412056 @default.
- W2040558735 hasRelatedWork W2014217229 @default.
- W2040558735 hasRelatedWork W2058499769 @default.
- W2040558735 hasRelatedWork W2619386357 @default.
- W2040558735 hasRelatedWork W3015707946 @default.