Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040571408> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2040571408 endingPage "989" @default.
- W2040571408 startingPage "979" @default.
- W2040571408 abstract "Irrigation simulation models have become increasingly accurate in the estimation of irrigation requirements. Accurate input data for these models are needed to take full advantage of the increased accuracy. Climatic input data are often supplied by networks of meteorological stations that provide spatially distributed data that need to be interpolated for a given site. The main objective of this study was to evaluate the influence of the different methods of interpolation of the climate data on the estimated irrigation water requirements. Software was developed to perform the spatial interpolation of the meteorological data series recorded by a network of weather stations to the center of each plot. The interpolation methods studied were the nearest neighbor, inverse distance weighting, and least squares collocation methods. Accuracy assessment and comparative analyses were performed for a network of weather stations in southern Portugal for evapotranspiration, wind speed, relative humidity, and precipitation. The impact of the interpolated meteorological data on the accuracy of the calculated crop water requirements was determined from a soil water balance model (IrrigRotation). The accuracy assessment for evapotranspiration suggested that the relative error ranged between 10% and 15%. For precipitation, the relative error ranged between 44% and 60%, showing higher spatial variability and greater difficulty in interpolating this variable. The least squares collocation and inverse distance weighting methods yielded only a slight improvement in the accuracy of the interpolated meteorological data when compared with the most commonly used method, Thiessen polygons (the nearest neighbor method). For the irrigation requirements, the value of the relative error was, on average, 16%, 17%, and 14% for to the nearest neighbor, inverse distance weighting, and least squares collocation, respectively, which correspond to deviations in the irrigation requirements of 79, 86, and 67 mm, respectively. Depending on the irrigation method, this average deviation can represent the saving of some irrigation events. The maximum relative error value for the irrigation requirements was 45% (165 mm), and the minimum relative error was 5% (27 mm). Thus, the spatial variability of meteorological variables has a considerable impact on the accuracy of the calculation of irrigation requirements, with implications for the amount of water used in irrigation. The comparison between the least squares collocation and the inverse distance weighting methods showed identical interpolation performances; however, because the inverse distance weighting is a much simpler method, it can be recommended from the practical point of view." @default.
- W2040571408 created "2016-06-24" @default.
- W2040571408 creator A5004710509 @default.
- W2040571408 creator A5007703929 @default.
- W2040571408 creator A5023008746 @default.
- W2040571408 date "2011-01-01" @default.
- W2040571408 modified "2023-10-17" @default.
- W2040571408 title "The Influence of Different Methods of Interpolating Spatial Meteorological Data on Calculated Irrigation Requirements" @default.
- W2040571408 doi "https://doi.org/10.13031/2013.40625" @default.
- W2040571408 hasPublicationYear "2011" @default.
- W2040571408 type Work @default.
- W2040571408 sameAs 2040571408 @default.
- W2040571408 citedByCount "7" @default.
- W2040571408 countsByYear W20405714082013 @default.
- W2040571408 countsByYear W20405714082016 @default.
- W2040571408 countsByYear W20405714082021 @default.
- W2040571408 countsByYear W20405714082023 @default.
- W2040571408 crossrefType "journal-article" @default.
- W2040571408 hasAuthorship W2040571408A5004710509 @default.
- W2040571408 hasAuthorship W2040571408A5007703929 @default.
- W2040571408 hasAuthorship W2040571408A5023008746 @default.
- W2040571408 hasConcept C105795698 @default.
- W2040571408 hasConcept C107054158 @default.
- W2040571408 hasConcept C121684516 @default.
- W2040571408 hasConcept C122383733 @default.
- W2040571408 hasConcept C126838900 @default.
- W2040571408 hasConcept C137800194 @default.
- W2040571408 hasConcept C153294291 @default.
- W2040571408 hasConcept C161067210 @default.
- W2040571408 hasConcept C176783924 @default.
- W2040571408 hasConcept C183115368 @default.
- W2040571408 hasConcept C18903297 @default.
- W2040571408 hasConcept C203332170 @default.
- W2040571408 hasConcept C205203396 @default.
- W2040571408 hasConcept C205649164 @default.
- W2040571408 hasConcept C33923547 @default.
- W2040571408 hasConcept C39432304 @default.
- W2040571408 hasConcept C41008148 @default.
- W2040571408 hasConcept C47872207 @default.
- W2040571408 hasConcept C502989409 @default.
- W2040571408 hasConcept C62649853 @default.
- W2040571408 hasConcept C71924100 @default.
- W2040571408 hasConcept C80023036 @default.
- W2040571408 hasConcept C86803240 @default.
- W2040571408 hasConceptScore W2040571408C105795698 @default.
- W2040571408 hasConceptScore W2040571408C107054158 @default.
- W2040571408 hasConceptScore W2040571408C121684516 @default.
- W2040571408 hasConceptScore W2040571408C122383733 @default.
- W2040571408 hasConceptScore W2040571408C126838900 @default.
- W2040571408 hasConceptScore W2040571408C137800194 @default.
- W2040571408 hasConceptScore W2040571408C153294291 @default.
- W2040571408 hasConceptScore W2040571408C161067210 @default.
- W2040571408 hasConceptScore W2040571408C176783924 @default.
- W2040571408 hasConceptScore W2040571408C183115368 @default.
- W2040571408 hasConceptScore W2040571408C18903297 @default.
- W2040571408 hasConceptScore W2040571408C203332170 @default.
- W2040571408 hasConceptScore W2040571408C205203396 @default.
- W2040571408 hasConceptScore W2040571408C205649164 @default.
- W2040571408 hasConceptScore W2040571408C33923547 @default.
- W2040571408 hasConceptScore W2040571408C39432304 @default.
- W2040571408 hasConceptScore W2040571408C41008148 @default.
- W2040571408 hasConceptScore W2040571408C47872207 @default.
- W2040571408 hasConceptScore W2040571408C502989409 @default.
- W2040571408 hasConceptScore W2040571408C62649853 @default.
- W2040571408 hasConceptScore W2040571408C71924100 @default.
- W2040571408 hasConceptScore W2040571408C80023036 @default.
- W2040571408 hasConceptScore W2040571408C86803240 @default.
- W2040571408 hasIssue "6" @default.
- W2040571408 hasLocation W20405714081 @default.
- W2040571408 hasOpenAccess W2040571408 @default.
- W2040571408 hasPrimaryLocation W20405714081 @default.
- W2040571408 hasRelatedWork W168467865 @default.
- W2040571408 hasRelatedWork W1979207290 @default.
- W2040571408 hasRelatedWork W2016260091 @default.
- W2040571408 hasRelatedWork W2037277044 @default.
- W2040571408 hasRelatedWork W2512393538 @default.
- W2040571408 hasRelatedWork W2785584190 @default.
- W2040571408 hasRelatedWork W2803146376 @default.
- W2040571408 hasRelatedWork W2954435206 @default.
- W2040571408 hasRelatedWork W3121190060 @default.
- W2040571408 hasRelatedWork W4281254599 @default.
- W2040571408 hasVolume "27" @default.
- W2040571408 isParatext "false" @default.
- W2040571408 isRetracted "false" @default.
- W2040571408 magId "2040571408" @default.
- W2040571408 workType "article" @default.