Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040571528> ?p ?o ?g. }
- W2040571528 abstract "Abstract Background The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. Results This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. Conclusion The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON." @default.
- W2040571528 created "2016-06-24" @default.
- W2040571528 creator A5002482637 @default.
- W2040571528 creator A5019217140 @default.
- W2040571528 creator A5047186561 @default.
- W2040571528 creator A5059336153 @default.
- W2040571528 creator A5067169508 @default.
- W2040571528 date "2012-05-10" @default.
- W2040571528 modified "2023-10-18" @default.
- W2040571528 title "Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems" @default.
- W2040571528 cites W1546107173 @default.
- W2040571528 cites W1564648335 @default.
- W2040571528 cites W1578255396 @default.
- W2040571528 cites W1600765471 @default.
- W2040571528 cites W1982258483 @default.
- W2040571528 cites W1984064362 @default.
- W2040571528 cites W1987365920 @default.
- W2040571528 cites W1988622494 @default.
- W2040571528 cites W2012985604 @default.
- W2040571528 cites W2018821216 @default.
- W2040571528 cites W2025733636 @default.
- W2040571528 cites W2030077105 @default.
- W2040571528 cites W2032234281 @default.
- W2040571528 cites W2033735656 @default.
- W2040571528 cites W2041505178 @default.
- W2040571528 cites W2042618381 @default.
- W2040571528 cites W2044384850 @default.
- W2040571528 cites W2048344914 @default.
- W2040571528 cites W2054954256 @default.
- W2040571528 cites W2056371558 @default.
- W2040571528 cites W2068965055 @default.
- W2040571528 cites W2069325543 @default.
- W2040571528 cites W2086532413 @default.
- W2040571528 cites W2090633148 @default.
- W2040571528 cites W2113706446 @default.
- W2040571528 cites W2149518557 @default.
- W2040571528 cites W2160163735 @default.
- W2040571528 cites W2314060300 @default.
- W2040571528 cites W4376453181 @default.
- W2040571528 doi "https://doi.org/10.1186/1471-2105-13-90" @default.
- W2040571528 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3536584" @default.
- W2040571528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22574924" @default.
- W2040571528 hasPublicationYear "2012" @default.
- W2040571528 type Work @default.
- W2040571528 sameAs 2040571528 @default.
- W2040571528 citedByCount "31" @default.
- W2040571528 countsByYear W20405715282013 @default.
- W2040571528 countsByYear W20405715282014 @default.
- W2040571528 countsByYear W20405715282015 @default.
- W2040571528 countsByYear W20405715282016 @default.
- W2040571528 countsByYear W20405715282017 @default.
- W2040571528 countsByYear W20405715282018 @default.
- W2040571528 countsByYear W20405715282019 @default.
- W2040571528 countsByYear W20405715282020 @default.
- W2040571528 countsByYear W20405715282022 @default.
- W2040571528 countsByYear W20405715282023 @default.
- W2040571528 crossrefType "journal-article" @default.
- W2040571528 hasAuthorship W2040571528A5002482637 @default.
- W2040571528 hasAuthorship W2040571528A5019217140 @default.
- W2040571528 hasAuthorship W2040571528A5047186561 @default.
- W2040571528 hasAuthorship W2040571528A5059336153 @default.
- W2040571528 hasAuthorship W2040571528A5067169508 @default.
- W2040571528 hasBestOaLocation W20405715281 @default.
- W2040571528 hasConcept C11413529 @default.
- W2040571528 hasConcept C115527620 @default.
- W2040571528 hasConcept C121332964 @default.
- W2040571528 hasConcept C126255220 @default.
- W2040571528 hasConcept C13280743 @default.
- W2040571528 hasConcept C134306372 @default.
- W2040571528 hasConcept C137836250 @default.
- W2040571528 hasConcept C140479938 @default.
- W2040571528 hasConcept C158622935 @default.
- W2040571528 hasConcept C162324750 @default.
- W2040571528 hasConcept C164752517 @default.
- W2040571528 hasConcept C177264268 @default.
- W2040571528 hasConcept C185798385 @default.
- W2040571528 hasConcept C186633575 @default.
- W2040571528 hasConcept C199360897 @default.
- W2040571528 hasConcept C205649164 @default.
- W2040571528 hasConcept C2777303404 @default.
- W2040571528 hasConcept C33923547 @default.
- W2040571528 hasConcept C41008148 @default.
- W2040571528 hasConcept C50522688 @default.
- W2040571528 hasConcept C62520636 @default.
- W2040571528 hasConcept C77553402 @default.
- W2040571528 hasConceptScore W2040571528C11413529 @default.
- W2040571528 hasConceptScore W2040571528C115527620 @default.
- W2040571528 hasConceptScore W2040571528C121332964 @default.
- W2040571528 hasConceptScore W2040571528C126255220 @default.
- W2040571528 hasConceptScore W2040571528C13280743 @default.
- W2040571528 hasConceptScore W2040571528C134306372 @default.
- W2040571528 hasConceptScore W2040571528C137836250 @default.
- W2040571528 hasConceptScore W2040571528C140479938 @default.
- W2040571528 hasConceptScore W2040571528C158622935 @default.
- W2040571528 hasConceptScore W2040571528C162324750 @default.
- W2040571528 hasConceptScore W2040571528C164752517 @default.
- W2040571528 hasConceptScore W2040571528C177264268 @default.
- W2040571528 hasConceptScore W2040571528C185798385 @default.
- W2040571528 hasConceptScore W2040571528C186633575 @default.
- W2040571528 hasConceptScore W2040571528C199360897 @default.