Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040571911> ?p ?o ?g. }
- W2040571911 endingPage "115002" @default.
- W2040571911 startingPage "115002" @default.
- W2040571911 abstract "We consider various random models (directed polymer, random ferromagnets, spin-glasses) in their disorder-dominated phases, where the free-energy cost $F(L)$ of an excitation of length $L$ presents fluctuations that grow as a power-law $Delta F(L) sim L^{theta}$ with the 'droplet' exponent $theta$. Within the droplet theory, the energy and entropy of such excitations present fluctuations that grow as $Delta E(L) sim Delta S(L) sim L^{d_s/2}$ where $d_s$ is the dimension of the surface of the excitation. These systems usually present a positive 'chaos' exponent $zeta=d_s/2-theta>0$, meaning that the free-energy fluctuation of order $L^{theta}$ is a near-cancellation of much bigger energy and entropy fluctuations of order $L^{d_s/2}$. Within the standard droplet theory, the dynamics is characterized by a barrier exponent $psi$ satisfying the bounds $theta leq psi leq d-1$. In this paper, we argue that a natural value for this barrier exponent is $psi=d_s/2$ : (i) for the directed polymer where $d_s=1$, this corresponds to $psi=1/2$ in all dimensions; (ii) for disordered ferromagnets where $d_s=d-1$, this corresponds to $psi=(d-1)/2$; (iii) for spin-glasses where interfaces have a non-trivial dimension $d_s$ known numerically, our conjecture $psi=d_s/2$ gives numerical predictions in $d=2$ and $d=3$. We compare these values with the available numerical results for each case, in particular with the measure $psi simeq 0.49$ of Kolton, Rosso, Giamarchi, Phys. Rev. Lett. 95, 180604 (2005) for the non-equilibrium dynamics of a directed elastic string." @default.
- W2040571911 created "2016-06-24" @default.
- W2040571911 creator A5060853119 @default.
- W2040571911 creator A5090565816 @default.
- W2040571911 date "2008-03-04" @default.
- W2040571911 modified "2023-10-16" @default.
- W2040571911 title "Non-equilibrium dynamics of polymers and interfaces in random media: conjecture ψ =ds/2 for the barrier exponent" @default.
- W2040571911 cites W1519722951 @default.
- W2040571911 cites W1526257355 @default.
- W2040571911 cites W1551776242 @default.
- W2040571911 cites W1555683695 @default.
- W2040571911 cites W1801539803 @default.
- W2040571911 cites W1817893905 @default.
- W2040571911 cites W1966758082 @default.
- W2040571911 cites W1968560513 @default.
- W2040571911 cites W1974477959 @default.
- W2040571911 cites W1979116715 @default.
- W2040571911 cites W1979913454 @default.
- W2040571911 cites W1983020781 @default.
- W2040571911 cites W1984408592 @default.
- W2040571911 cites W1984842125 @default.
- W2040571911 cites W1986704943 @default.
- W2040571911 cites W1986743479 @default.
- W2040571911 cites W1987475321 @default.
- W2040571911 cites W1987698473 @default.
- W2040571911 cites W1992669244 @default.
- W2040571911 cites W1993492693 @default.
- W2040571911 cites W1993520878 @default.
- W2040571911 cites W1995425665 @default.
- W2040571911 cites W1996433014 @default.
- W2040571911 cites W2004571405 @default.
- W2040571911 cites W2005258741 @default.
- W2040571911 cites W2013679196 @default.
- W2040571911 cites W2013911361 @default.
- W2040571911 cites W2019837378 @default.
- W2040571911 cites W2020730579 @default.
- W2040571911 cites W2024718189 @default.
- W2040571911 cites W2024870499 @default.
- W2040571911 cites W2027508396 @default.
- W2040571911 cites W2028565493 @default.
- W2040571911 cites W2048481523 @default.
- W2040571911 cites W2054069977 @default.
- W2040571911 cites W2054311269 @default.
- W2040571911 cites W2054749714 @default.
- W2040571911 cites W2055437742 @default.
- W2040571911 cites W2062511979 @default.
- W2040571911 cites W2064353626 @default.
- W2040571911 cites W2064829900 @default.
- W2040571911 cites W2072790958 @default.
- W2040571911 cites W2078801587 @default.
- W2040571911 cites W2086052090 @default.
- W2040571911 cites W2086539718 @default.
- W2040571911 cites W2086943496 @default.
- W2040571911 cites W2091957196 @default.
- W2040571911 cites W2092393906 @default.
- W2040571911 cites W2093742155 @default.
- W2040571911 cites W2101070141 @default.
- W2040571911 cites W2102775733 @default.
- W2040571911 cites W2154153269 @default.
- W2040571911 cites W2171813100 @default.
- W2040571911 cites W2471275777 @default.
- W2040571911 cites W3099803055 @default.
- W2040571911 cites W3100333039 @default.
- W2040571911 cites W3101840836 @default.
- W2040571911 cites W3102881142 @default.
- W2040571911 cites W3104790781 @default.
- W2040571911 cites W3147340517 @default.
- W2040571911 doi "https://doi.org/10.1088/1751-8113/41/11/115002" @default.
- W2040571911 hasPublicationYear "2008" @default.
- W2040571911 type Work @default.
- W2040571911 sameAs 2040571911 @default.
- W2040571911 citedByCount "9" @default.
- W2040571911 countsByYear W20405719112014 @default.
- W2040571911 crossrefType "journal-article" @default.
- W2040571911 hasAuthorship W2040571911A5060853119 @default.
- W2040571911 hasAuthorship W2040571911A5090565816 @default.
- W2040571911 hasBestOaLocation W20405719113 @default.
- W2040571911 hasConcept C121332964 @default.
- W2040571911 hasConcept C121864883 @default.
- W2040571911 hasConcept C138885662 @default.
- W2040571911 hasConcept C145912823 @default.
- W2040571911 hasConcept C159467904 @default.
- W2040571911 hasConcept C192562407 @default.
- W2040571911 hasConcept C202444582 @default.
- W2040571911 hasConcept C24890656 @default.
- W2040571911 hasConcept C2780388253 @default.
- W2040571911 hasConcept C2780990831 @default.
- W2040571911 hasConcept C33923547 @default.
- W2040571911 hasConcept C41895202 @default.
- W2040571911 hasConcept C46141821 @default.
- W2040571911 hasConcept C521977710 @default.
- W2040571911 hasConceptScore W2040571911C121332964 @default.
- W2040571911 hasConceptScore W2040571911C121864883 @default.
- W2040571911 hasConceptScore W2040571911C138885662 @default.
- W2040571911 hasConceptScore W2040571911C145912823 @default.
- W2040571911 hasConceptScore W2040571911C159467904 @default.
- W2040571911 hasConceptScore W2040571911C192562407 @default.
- W2040571911 hasConceptScore W2040571911C202444582 @default.