Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040661907> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2040661907 endingPage "59" @default.
- W2040661907 startingPage "50" @default.
- W2040661907 abstract "This paper proposes an innovative fraud detection method, built upon existing fraud detection research and Minority Report , to deal with the data mining problem of skewed data distributions. This method uses backpropagation (BP), together with naive Bayesian (NB) and C4.5 algorithms, on data partitions derived from minority oversampling with replacement. Its originality lies in the use of a single meta-classifier (stacking) to choose the best base classifiers, and then combine these base classifiers' predictions (bagging) to improve cost savings (stacking-bagging). Results from a publicly available automobile insurance fraud detection data set demonstrate that stacking-bagging performs slightly better than the best performing bagged algorithm, C4.5, and its best classifier, C4.5 (2), in terms of cost savings. Stacking-bagging also outperforms the common technique used in industry (BP without both sampling and partitioning). Subsequently, this paper compares the new fraud detection method (meta-learning approach) against C4.5 trained using undersampling, oversampling, and SMOTEing without partitioning (sampling approach). Results show that, given a fixed decision threshold and cost matrix, the partitioning and multiple algorithms approach achieves marginally higher cost savings than varying the entire training data set with different class distributions. The most interesting find is confirming that the combination of classifiers to produce the best cost savings has its contributions from all three algorithms." @default.
- W2040661907 created "2016-06-24" @default.
- W2040661907 creator A5008490552 @default.
- W2040661907 creator A5012763174 @default.
- W2040661907 creator A5072204103 @default.
- W2040661907 date "2004-06-01" @default.
- W2040661907 modified "2023-10-14" @default.
- W2040661907 title "Minority report in fraud detection" @default.
- W2040661907 cites W1492088121 @default.
- W2040661907 cites W1517113043 @default.
- W2040661907 cites W1982455127 @default.
- W2040661907 cites W2023294425 @default.
- W2040661907 cites W2037322594 @default.
- W2040661907 cites W2040290480 @default.
- W2040661907 cites W2058732827 @default.
- W2040661907 cites W2064895247 @default.
- W2040661907 cites W2096942889 @default.
- W2040661907 cites W2112865076 @default.
- W2040661907 cites W2115629999 @default.
- W2040661907 cites W2147826622 @default.
- W2040661907 cites W2148143831 @default.
- W2040661907 cites W2151554678 @default.
- W2040661907 cites W2160150610 @default.
- W2040661907 cites W28412257 @default.
- W2040661907 doi "https://doi.org/10.1145/1007730.1007738" @default.
- W2040661907 hasPublicationYear "2004" @default.
- W2040661907 type Work @default.
- W2040661907 sameAs 2040661907 @default.
- W2040661907 citedByCount "399" @default.
- W2040661907 countsByYear W20406619072012 @default.
- W2040661907 countsByYear W20406619072013 @default.
- W2040661907 countsByYear W20406619072014 @default.
- W2040661907 countsByYear W20406619072015 @default.
- W2040661907 countsByYear W20406619072016 @default.
- W2040661907 countsByYear W20406619072017 @default.
- W2040661907 countsByYear W20406619072018 @default.
- W2040661907 countsByYear W20406619072019 @default.
- W2040661907 countsByYear W20406619072020 @default.
- W2040661907 countsByYear W20406619072021 @default.
- W2040661907 countsByYear W20406619072022 @default.
- W2040661907 countsByYear W20406619072023 @default.
- W2040661907 crossrefType "journal-article" @default.
- W2040661907 hasAuthorship W2040661907A5008490552 @default.
- W2040661907 hasAuthorship W2040661907A5012763174 @default.
- W2040661907 hasAuthorship W2040661907A5072204103 @default.
- W2040661907 hasConcept C119857082 @default.
- W2040661907 hasConcept C124101348 @default.
- W2040661907 hasConcept C136536468 @default.
- W2040661907 hasConcept C154945302 @default.
- W2040661907 hasConcept C162040801 @default.
- W2040661907 hasConcept C197323446 @default.
- W2040661907 hasConcept C2776257435 @default.
- W2040661907 hasConcept C31258907 @default.
- W2040661907 hasConcept C41008148 @default.
- W2040661907 hasConcept C95623464 @default.
- W2040661907 hasConceptScore W2040661907C119857082 @default.
- W2040661907 hasConceptScore W2040661907C124101348 @default.
- W2040661907 hasConceptScore W2040661907C136536468 @default.
- W2040661907 hasConceptScore W2040661907C154945302 @default.
- W2040661907 hasConceptScore W2040661907C162040801 @default.
- W2040661907 hasConceptScore W2040661907C197323446 @default.
- W2040661907 hasConceptScore W2040661907C2776257435 @default.
- W2040661907 hasConceptScore W2040661907C31258907 @default.
- W2040661907 hasConceptScore W2040661907C41008148 @default.
- W2040661907 hasConceptScore W2040661907C95623464 @default.
- W2040661907 hasIssue "1" @default.
- W2040661907 hasLocation W20406619071 @default.
- W2040661907 hasOpenAccess W2040661907 @default.
- W2040661907 hasPrimaryLocation W20406619071 @default.
- W2040661907 hasRelatedWork W2399571531 @default.
- W2040661907 hasRelatedWork W2904737874 @default.
- W2040661907 hasRelatedWork W2947132063 @default.
- W2040661907 hasRelatedWork W3016117175 @default.
- W2040661907 hasRelatedWork W3199294801 @default.
- W2040661907 hasRelatedWork W32988189 @default.
- W2040661907 hasRelatedWork W4287816717 @default.
- W2040661907 hasRelatedWork W4288337828 @default.
- W2040661907 hasRelatedWork W4308469503 @default.
- W2040661907 hasRelatedWork W80466363 @default.
- W2040661907 hasVolume "6" @default.
- W2040661907 isParatext "false" @default.
- W2040661907 isRetracted "false" @default.
- W2040661907 magId "2040661907" @default.
- W2040661907 workType "article" @default.