Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040667075> ?p ?o ?g. }
- W2040667075 endingPage "466" @default.
- W2040667075 startingPage "458" @default.
- W2040667075 abstract "With the advancement of digital image processing, tool condition monitoring using machine vision is gaining importance day by day. In this work, online acquisition of machined surface images has been done time to time and then those captured images were analysed using an improvised grey level co-occurrence matrix (GLCM) technique with appropriate pixel pair spacing (pps) or offset parameter. A novel technique has been used for choosing the appropriate pps for periodic texture images using power spectral density. Also the variation of texture descriptors, namely, contrast and homogeneity, obtained from GLCM of turned surface images have been studied with the variation of machining time along with surface roughness and tool wear at two different feed rates." @default.
- W2040667075 created "2016-06-24" @default.
- W2040667075 creator A5000351201 @default.
- W2040667075 creator A5001826346 @default.
- W2040667075 creator A5011127956 @default.
- W2040667075 creator A5027109480 @default.
- W2040667075 creator A5047214385 @default.
- W2040667075 creator A5071520410 @default.
- W2040667075 date "2012-07-01" @default.
- W2040667075 modified "2023-10-05" @default.
- W2040667075 title "Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique" @default.
- W2040667075 cites W175673916 @default.
- W2040667075 cites W1965857552 @default.
- W2040667075 cites W1984412717 @default.
- W2040667075 cites W1991050771 @default.
- W2040667075 cites W1995060024 @default.
- W2040667075 cites W1996231862 @default.
- W2040667075 cites W1997214384 @default.
- W2040667075 cites W1999029910 @default.
- W2040667075 cites W2010148346 @default.
- W2040667075 cites W2013045208 @default.
- W2040667075 cites W2018203407 @default.
- W2040667075 cites W2020778742 @default.
- W2040667075 cites W2022608362 @default.
- W2040667075 cites W2026294846 @default.
- W2040667075 cites W2031235577 @default.
- W2040667075 cites W2054898043 @default.
- W2040667075 cites W2064222435 @default.
- W2040667075 cites W2066604318 @default.
- W2040667075 cites W2068176870 @default.
- W2040667075 cites W2072488206 @default.
- W2040667075 cites W2076597562 @default.
- W2040667075 cites W2078628653 @default.
- W2040667075 cites W2079684258 @default.
- W2040667075 cites W2079856888 @default.
- W2040667075 cites W2082098229 @default.
- W2040667075 cites W2092183904 @default.
- W2040667075 cites W2092712734 @default.
- W2040667075 cites W2146616171 @default.
- W2040667075 doi "https://doi.org/10.1016/j.precisioneng.2012.02.004" @default.
- W2040667075 hasPublicationYear "2012" @default.
- W2040667075 type Work @default.
- W2040667075 sameAs 2040667075 @default.
- W2040667075 citedByCount "81" @default.
- W2040667075 countsByYear W20406670752013 @default.
- W2040667075 countsByYear W20406670752014 @default.
- W2040667075 countsByYear W20406670752015 @default.
- W2040667075 countsByYear W20406670752016 @default.
- W2040667075 countsByYear W20406670752017 @default.
- W2040667075 countsByYear W20406670752018 @default.
- W2040667075 countsByYear W20406670752019 @default.
- W2040667075 countsByYear W20406670752020 @default.
- W2040667075 countsByYear W20406670752021 @default.
- W2040667075 countsByYear W20406670752022 @default.
- W2040667075 countsByYear W20406670752023 @default.
- W2040667075 crossrefType "journal-article" @default.
- W2040667075 hasAuthorship W2040667075A5000351201 @default.
- W2040667075 hasAuthorship W2040667075A5001826346 @default.
- W2040667075 hasAuthorship W2040667075A5011127956 @default.
- W2040667075 hasAuthorship W2040667075A5027109480 @default.
- W2040667075 hasAuthorship W2040667075A5047214385 @default.
- W2040667075 hasAuthorship W2040667075A5071520410 @default.
- W2040667075 hasConcept C107365816 @default.
- W2040667075 hasConcept C115961682 @default.
- W2040667075 hasConcept C117479156 @default.
- W2040667075 hasConcept C119857082 @default.
- W2040667075 hasConcept C142259097 @default.
- W2040667075 hasConcept C153180895 @default.
- W2040667075 hasConcept C154945302 @default.
- W2040667075 hasConcept C159985019 @default.
- W2040667075 hasConcept C160633673 @default.
- W2040667075 hasConcept C175291020 @default.
- W2040667075 hasConcept C191897082 @default.
- W2040667075 hasConcept C192562407 @default.
- W2040667075 hasConcept C199360897 @default.
- W2040667075 hasConcept C2781195486 @default.
- W2040667075 hasConcept C2985861186 @default.
- W2040667075 hasConcept C2994222927 @default.
- W2040667075 hasConcept C31972630 @default.
- W2040667075 hasConcept C41008148 @default.
- W2040667075 hasConcept C42781572 @default.
- W2040667075 hasConcept C523214423 @default.
- W2040667075 hasConcept C63099799 @default.
- W2040667075 hasConcept C71039073 @default.
- W2040667075 hasConcept C9417928 @default.
- W2040667075 hasConceptScore W2040667075C107365816 @default.
- W2040667075 hasConceptScore W2040667075C115961682 @default.
- W2040667075 hasConceptScore W2040667075C117479156 @default.
- W2040667075 hasConceptScore W2040667075C119857082 @default.
- W2040667075 hasConceptScore W2040667075C142259097 @default.
- W2040667075 hasConceptScore W2040667075C153180895 @default.
- W2040667075 hasConceptScore W2040667075C154945302 @default.
- W2040667075 hasConceptScore W2040667075C159985019 @default.
- W2040667075 hasConceptScore W2040667075C160633673 @default.
- W2040667075 hasConceptScore W2040667075C175291020 @default.
- W2040667075 hasConceptScore W2040667075C191897082 @default.
- W2040667075 hasConceptScore W2040667075C192562407 @default.
- W2040667075 hasConceptScore W2040667075C199360897 @default.