Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040679392> ?p ?o ?g. }
- W2040679392 endingPage "144" @default.
- W2040679392 startingPage "133" @default.
- W2040679392 abstract "Large software projects are subject to quality risks of having defective modules that will cause failures during the software execution. Several software repositories contain source code of large projects that are composed of many modules. These software repositories include data for the software metrics of these modules and the defective state of each module. In this paper, a data mining approach is used to show the attributes that predict the defective state of software modules. Software solution architecture is proposed to convert the extracted knowledge into data mining models that can be integrated with the current software project metrics and bugs data in order to enhance the prediction. The results show better prediction capabilities when all the algorithms are combined using weighted votes. When only one individual algorithm is used, Naïve Bayes algorithm has the best results, then the Neural Network and the Decision Trees algorithms." @default.
- W2040679392 created "2016-06-24" @default.
- W2040679392 creator A5057744937 @default.
- W2040679392 date "2015-03-01" @default.
- W2040679392 modified "2023-09-26" @default.
- W2040679392 title "Extracting software static defect models using data mining" @default.
- W2040679392 cites W1569909748 @default.
- W2040679392 cites W1975040830 @default.
- W2040679392 cites W1983024824 @default.
- W2040679392 cites W1983554615 @default.
- W2040679392 cites W1990393403 @default.
- W2040679392 cites W1999785511 @default.
- W2040679392 cites W2035602304 @default.
- W2040679392 cites W2063255898 @default.
- W2040679392 cites W2070527651 @default.
- W2040679392 cites W2072645748 @default.
- W2040679392 cites W2081004173 @default.
- W2040679392 cites W2101728371 @default.
- W2040679392 cites W2105776892 @default.
- W2040679392 cites W2111235104 @default.
- W2040679392 cites W2120692198 @default.
- W2040679392 cites W2120999344 @default.
- W2040679392 cites W2130128436 @default.
- W2040679392 cites W2131061493 @default.
- W2040679392 cites W2131891947 @default.
- W2040679392 cites W2133575467 @default.
- W2040679392 cites W2143637886 @default.
- W2040679392 cites W2146338950 @default.
- W2040679392 cites W2147127761 @default.
- W2040679392 cites W2150874999 @default.
- W2040679392 cites W2151666086 @default.
- W2040679392 cites W2153426546 @default.
- W2040679392 cites W2155068063 @default.
- W2040679392 cites W2160988203 @default.
- W2040679392 cites W2164355159 @default.
- W2040679392 cites W2164818334 @default.
- W2040679392 cites W2332678043 @default.
- W2040679392 cites W3141989311 @default.
- W2040679392 cites W3143096207 @default.
- W2040679392 cites W4230336305 @default.
- W2040679392 cites W4246635748 @default.
- W2040679392 cites W4254702186 @default.
- W2040679392 doi "https://doi.org/10.1016/j.asej.2014.09.007" @default.
- W2040679392 hasPublicationYear "2015" @default.
- W2040679392 type Work @default.
- W2040679392 sameAs 2040679392 @default.
- W2040679392 citedByCount "17" @default.
- W2040679392 countsByYear W20406793922015 @default.
- W2040679392 countsByYear W20406793922016 @default.
- W2040679392 countsByYear W20406793922017 @default.
- W2040679392 countsByYear W20406793922018 @default.
- W2040679392 countsByYear W20406793922019 @default.
- W2040679392 countsByYear W20406793922020 @default.
- W2040679392 countsByYear W20406793922021 @default.
- W2040679392 countsByYear W20406793922022 @default.
- W2040679392 crossrefType "journal-article" @default.
- W2040679392 hasAuthorship W2040679392A5057744937 @default.
- W2040679392 hasBestOaLocation W20406793921 @default.
- W2040679392 hasConcept C1009929 @default.
- W2040679392 hasConcept C103520596 @default.
- W2040679392 hasConcept C115903868 @default.
- W2040679392 hasConcept C117447612 @default.
- W2040679392 hasConcept C124101348 @default.
- W2040679392 hasConcept C127413603 @default.
- W2040679392 hasConcept C186846655 @default.
- W2040679392 hasConcept C199360897 @default.
- W2040679392 hasConcept C201515116 @default.
- W2040679392 hasConcept C21547014 @default.
- W2040679392 hasConcept C2777904410 @default.
- W2040679392 hasConcept C41008148 @default.
- W2040679392 hasConcept C48002344 @default.
- W2040679392 hasConcept C529173508 @default.
- W2040679392 hasConcept C82214349 @default.
- W2040679392 hasConceptScore W2040679392C1009929 @default.
- W2040679392 hasConceptScore W2040679392C103520596 @default.
- W2040679392 hasConceptScore W2040679392C115903868 @default.
- W2040679392 hasConceptScore W2040679392C117447612 @default.
- W2040679392 hasConceptScore W2040679392C124101348 @default.
- W2040679392 hasConceptScore W2040679392C127413603 @default.
- W2040679392 hasConceptScore W2040679392C186846655 @default.
- W2040679392 hasConceptScore W2040679392C199360897 @default.
- W2040679392 hasConceptScore W2040679392C201515116 @default.
- W2040679392 hasConceptScore W2040679392C21547014 @default.
- W2040679392 hasConceptScore W2040679392C2777904410 @default.
- W2040679392 hasConceptScore W2040679392C41008148 @default.
- W2040679392 hasConceptScore W2040679392C48002344 @default.
- W2040679392 hasConceptScore W2040679392C529173508 @default.
- W2040679392 hasConceptScore W2040679392C82214349 @default.
- W2040679392 hasIssue "1" @default.
- W2040679392 hasLocation W20406793921 @default.
- W2040679392 hasOpenAccess W2040679392 @default.
- W2040679392 hasPrimaryLocation W20406793921 @default.
- W2040679392 hasRelatedWork W1519013455 @default.
- W2040679392 hasRelatedWork W2068483578 @default.
- W2040679392 hasRelatedWork W2151381004 @default.
- W2040679392 hasRelatedWork W2182881874 @default.
- W2040679392 hasRelatedWork W2744194139 @default.
- W2040679392 hasRelatedWork W2769494974 @default.