Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040693978> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2040693978 endingPage "108" @default.
- W2040693978 startingPage "103" @default.
- W2040693978 abstract "대표적인 소수판별법으로 밀러-라빈방법이 적용되고 있다. 밀러-라빈판별법은 m=[2, n-1]에서 m을 k개 선택하여 n-1=<TEX>$2^sd$</TEX>, <TEX>$0;{leq};r;{leq};s-1$</TEX> 에 대해 <TEX>$m^d;{equiv};1(mod;n)$</TEX> 또는 <TEX>$m^{2^rd};{equiv};-1(mod n)$</TEX>로 소수를 판별하여 <TEX>$k{times}r$</TEX>회를 수행한다. 본 논문은 c=<TEX>$p^{frac{n-1}{2}}(mod;n)$</TEX>을 계산하여 c=-1이면 소수로 판별하여 k회 수행하였다. 제안된 판별법은 밀러-라빈 판별법의 <TEX>$k{times}r$</TEX>회를 k회로 감소시켰다. Generally, Miller-Rabin method has been the most popular primality test. This method arbitrary selects m at k-times from m=[2, n-1] range and (m,n)=1. Miller-Rabin method performs <TEX>$k{times}r$</TEX> times and reports prime as <TEX>$m^d;{equiv};1(mod;n)$</TEX> or <TEX>$m^{2^rd};{equiv};-1(mod n)$</TEX> such that n-1=<TEX>$2^sd$</TEX>, <TEX>$0;{leq};r;{leq};s-1$</TEX>. This paper suggests more simple primality test than Miller-Rabin method. This test method computes c=<TEX>$p^{frac{n-1}{2}}(mod;n)$</TEX> for k times and reports prime as c=-1. The proposed primality test method reduces <TEX>$k{times}r$</TEX> times of Miller-Rabin method to k times." @default.
- W2040693978 created "2016-06-24" @default.
- W2040693978 creator A5024139086 @default.
- W2040693978 creator A5065336848 @default.
- W2040693978 date "2011-08-31" @default.
- W2040693978 modified "2023-10-05" @default.
- W2040693978 title "The Primality Test" @default.
- W2040693978 cites W1989457091 @default.
- W2040693978 cites W1998777945 @default.
- W2040693978 doi "https://doi.org/10.9708/jksci.2011.16.8.103" @default.
- W2040693978 hasPublicationYear "2011" @default.
- W2040693978 type Work @default.
- W2040693978 sameAs 2040693978 @default.
- W2040693978 citedByCount "0" @default.
- W2040693978 crossrefType "journal-article" @default.
- W2040693978 hasAuthorship W2040693978A5024139086 @default.
- W2040693978 hasAuthorship W2040693978A5065336848 @default.
- W2040693978 hasBestOaLocation W20406939781 @default.
- W2040693978 hasConcept C114614502 @default.
- W2040693978 hasConcept C118615104 @default.
- W2040693978 hasConcept C184992742 @default.
- W2040693978 hasConcept C191421660 @default.
- W2040693978 hasConcept C33923547 @default.
- W2040693978 hasConcept C94375191 @default.
- W2040693978 hasConceptScore W2040693978C114614502 @default.
- W2040693978 hasConceptScore W2040693978C118615104 @default.
- W2040693978 hasConceptScore W2040693978C184992742 @default.
- W2040693978 hasConceptScore W2040693978C191421660 @default.
- W2040693978 hasConceptScore W2040693978C33923547 @default.
- W2040693978 hasConceptScore W2040693978C94375191 @default.
- W2040693978 hasIssue "8" @default.
- W2040693978 hasLocation W20406939781 @default.
- W2040693978 hasOpenAccess W2040693978 @default.
- W2040693978 hasPrimaryLocation W20406939781 @default.
- W2040693978 hasRelatedWork W1978042415 @default.
- W2040693978 hasRelatedWork W2017331178 @default.
- W2040693978 hasRelatedWork W2143276068 @default.
- W2040693978 hasRelatedWork W2145964906 @default.
- W2040693978 hasRelatedWork W2182275367 @default.
- W2040693978 hasRelatedWork W2184427155 @default.
- W2040693978 hasRelatedWork W2976797620 @default.
- W2040693978 hasRelatedWork W3086542228 @default.
- W2040693978 hasRelatedWork W3145601619 @default.
- W2040693978 hasRelatedWork W986720173 @default.
- W2040693978 hasVolume "16" @default.
- W2040693978 isParatext "false" @default.
- W2040693978 isRetracted "false" @default.
- W2040693978 magId "2040693978" @default.
- W2040693978 workType "article" @default.