Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040698831> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2040698831 endingPage "39" @default.
- W2040698831 startingPage "28" @default.
- W2040698831 abstract "Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to recognize highly complex non-linear correlations. The network was trained with real measurement data and updated with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of aircraft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at epoch 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10-3. The correlation between targets and outputs is confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport authorities. These would institute policies to manage or reduce pollutant emissions considering population and income growth to be socially positive." @default.
- W2040698831 created "2016-06-24" @default.
- W2040698831 creator A5002575234 @default.
- W2040698831 creator A5045758165 @default.
- W2040698831 creator A5057100140 @default.
- W2040698831 creator A5083059025 @default.
- W2040698831 date "2013-01-01" @default.
- W2040698831 modified "2023-10-01" @default.
- W2040698831 title "Artificial Neural Network Modeling of Healthy Risk Level Induced by Aircraft Pollutant Impacts around Soekarno Hatta International Airport" @default.
- W2040698831 cites W1994440783 @default.
- W2040698831 cites W2011914137 @default.
- W2040698831 cites W2046291027 @default.
- W2040698831 cites W2056437309 @default.
- W2040698831 cites W2083844448 @default.
- W2040698831 cites W2117812871 @default.
- W2040698831 cites W4253038317 @default.
- W2040698831 doi "https://doi.org/10.4236/jep.2013.48a1005" @default.
- W2040698831 hasPublicationYear "2013" @default.
- W2040698831 type Work @default.
- W2040698831 sameAs 2040698831 @default.
- W2040698831 citedByCount "1" @default.
- W2040698831 countsByYear W20406988312023 @default.
- W2040698831 crossrefType "journal-article" @default.
- W2040698831 hasAuthorship W2040698831A5002575234 @default.
- W2040698831 hasAuthorship W2040698831A5045758165 @default.
- W2040698831 hasAuthorship W2040698831A5057100140 @default.
- W2040698831 hasAuthorship W2040698831A5083059025 @default.
- W2040698831 hasBestOaLocation W20406988311 @default.
- W2040698831 hasConcept C105795698 @default.
- W2040698831 hasConcept C127413603 @default.
- W2040698831 hasConcept C139945424 @default.
- W2040698831 hasConcept C144024400 @default.
- W2040698831 hasConcept C149923435 @default.
- W2040698831 hasConcept C154945302 @default.
- W2040698831 hasConcept C178790620 @default.
- W2040698831 hasConcept C185592680 @default.
- W2040698831 hasConcept C22212356 @default.
- W2040698831 hasConcept C2779679337 @default.
- W2040698831 hasConcept C2908647359 @default.
- W2040698831 hasConcept C33923547 @default.
- W2040698831 hasConcept C41008148 @default.
- W2040698831 hasConcept C50644808 @default.
- W2040698831 hasConcept C82685317 @default.
- W2040698831 hasConceptScore W2040698831C105795698 @default.
- W2040698831 hasConceptScore W2040698831C127413603 @default.
- W2040698831 hasConceptScore W2040698831C139945424 @default.
- W2040698831 hasConceptScore W2040698831C144024400 @default.
- W2040698831 hasConceptScore W2040698831C149923435 @default.
- W2040698831 hasConceptScore W2040698831C154945302 @default.
- W2040698831 hasConceptScore W2040698831C178790620 @default.
- W2040698831 hasConceptScore W2040698831C185592680 @default.
- W2040698831 hasConceptScore W2040698831C22212356 @default.
- W2040698831 hasConceptScore W2040698831C2779679337 @default.
- W2040698831 hasConceptScore W2040698831C2908647359 @default.
- W2040698831 hasConceptScore W2040698831C33923547 @default.
- W2040698831 hasConceptScore W2040698831C41008148 @default.
- W2040698831 hasConceptScore W2040698831C50644808 @default.
- W2040698831 hasConceptScore W2040698831C82685317 @default.
- W2040698831 hasIssue "08" @default.
- W2040698831 hasLocation W20406988311 @default.
- W2040698831 hasLocation W20406988312 @default.
- W2040698831 hasLocation W20406988313 @default.
- W2040698831 hasLocation W20406988314 @default.
- W2040698831 hasOpenAccess W2040698831 @default.
- W2040698831 hasPrimaryLocation W20406988311 @default.
- W2040698831 hasRelatedWork W1592972299 @default.
- W2040698831 hasRelatedWork W2085381944 @default.
- W2040698831 hasRelatedWork W2099878889 @default.
- W2040698831 hasRelatedWork W2332256921 @default.
- W2040698831 hasRelatedWork W2387919470 @default.
- W2040698831 hasRelatedWork W2548002404 @default.
- W2040698831 hasRelatedWork W2807954395 @default.
- W2040698831 hasRelatedWork W3130729272 @default.
- W2040698831 hasRelatedWork W3133520697 @default.
- W2040698831 hasRelatedWork W2303860851 @default.
- W2040698831 hasVolume "04" @default.
- W2040698831 isParatext "false" @default.
- W2040698831 isRetracted "false" @default.
- W2040698831 magId "2040698831" @default.
- W2040698831 workType "article" @default.