Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040735861> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2040735861 endingPage "129" @default.
- W2040735861 startingPage "109" @default.
- W2040735861 abstract "Forecasting for a time series of low counts, such as forecasting the number of patents to be awarded to an industry, is an important research topic in socio-economic sectors. Recently (2004), Freeland and McCabe introduced a Gaussian type stationary correlation model-based forecasting which appears to work well for the stationary time series of low counts. In practice, however, it may happen that the time series of counts will be non-stationary and also the series may contain over-dispersed counts. To develop the forecasting functions for this type of non-stationary over-dispersed data, the paper provides an extension of the stationary correlation models for Poisson counts to the non-stationary correlation models for negative binomial counts. The forecasting methodology appears to work well, for example, for a US time series of polio counts, whereas the existing Bayesian methods of forecasting appear to encounter serious convergence problems. Further, a simulation study is conducted to examine the performance of the proposed forecasting functions, which appear to work well irrespective of whether the time series contains small or large counts. Copyright © 2008 John Wiley & Sons, Ltd." @default.
- W2040735861 created "2016-06-24" @default.
- W2040735861 creator A5061575002 @default.
- W2040735861 date "2008-01-01" @default.
- W2040735861 modified "2023-10-18" @default.
- W2040735861 title "On forecasting counts" @default.
- W2040735861 cites W1963902836 @default.
- W2040735861 cites W1979869620 @default.
- W2040735861 cites W2016238739 @default.
- W2040735861 cites W2016364992 @default.
- W2040735861 cites W2039019714 @default.
- W2040735861 cites W2066764941 @default.
- W2040735861 cites W2073403606 @default.
- W2040735861 cites W2099726211 @default.
- W2040735861 cites W2320192233 @default.
- W2040735861 cites W2331668135 @default.
- W2040735861 doi "https://doi.org/10.1002/for.1044" @default.
- W2040735861 hasPublicationYear "2008" @default.
- W2040735861 type Work @default.
- W2040735861 sameAs 2040735861 @default.
- W2040735861 citedByCount "11" @default.
- W2040735861 countsByYear W20407358612013 @default.
- W2040735861 countsByYear W20407358612015 @default.
- W2040735861 countsByYear W20407358612016 @default.
- W2040735861 countsByYear W20407358612018 @default.
- W2040735861 countsByYear W20407358612019 @default.
- W2040735861 countsByYear W20407358612020 @default.
- W2040735861 crossrefType "journal-article" @default.
- W2040735861 hasAuthorship W2040735861A5061575002 @default.
- W2040735861 hasConcept C100906024 @default.
- W2040735861 hasConcept C105795698 @default.
- W2040735861 hasConcept C107673813 @default.
- W2040735861 hasConcept C122282355 @default.
- W2040735861 hasConcept C143724316 @default.
- W2040735861 hasConcept C149782125 @default.
- W2040735861 hasConcept C151406439 @default.
- W2040735861 hasConcept C151730666 @default.
- W2040735861 hasConcept C154945302 @default.
- W2040735861 hasConcept C199335787 @default.
- W2040735861 hasConcept C33923547 @default.
- W2040735861 hasConcept C41008148 @default.
- W2040735861 hasConcept C49937458 @default.
- W2040735861 hasConcept C86803240 @default.
- W2040735861 hasConceptScore W2040735861C100906024 @default.
- W2040735861 hasConceptScore W2040735861C105795698 @default.
- W2040735861 hasConceptScore W2040735861C107673813 @default.
- W2040735861 hasConceptScore W2040735861C122282355 @default.
- W2040735861 hasConceptScore W2040735861C143724316 @default.
- W2040735861 hasConceptScore W2040735861C149782125 @default.
- W2040735861 hasConceptScore W2040735861C151406439 @default.
- W2040735861 hasConceptScore W2040735861C151730666 @default.
- W2040735861 hasConceptScore W2040735861C154945302 @default.
- W2040735861 hasConceptScore W2040735861C199335787 @default.
- W2040735861 hasConceptScore W2040735861C33923547 @default.
- W2040735861 hasConceptScore W2040735861C41008148 @default.
- W2040735861 hasConceptScore W2040735861C49937458 @default.
- W2040735861 hasConceptScore W2040735861C86803240 @default.
- W2040735861 hasIssue "2" @default.
- W2040735861 hasLocation W20407358611 @default.
- W2040735861 hasOpenAccess W2040735861 @default.
- W2040735861 hasPrimaryLocation W20407358611 @default.
- W2040735861 hasRelatedWork W1516873292 @default.
- W2040735861 hasRelatedWork W1964821080 @default.
- W2040735861 hasRelatedWork W2011990142 @default.
- W2040735861 hasRelatedWork W2116166733 @default.
- W2040735861 hasRelatedWork W2129537379 @default.
- W2040735861 hasRelatedWork W2159796125 @default.
- W2040735861 hasRelatedWork W2971731486 @default.
- W2040735861 hasRelatedWork W3210390693 @default.
- W2040735861 hasRelatedWork W4318718989 @default.
- W2040735861 hasRelatedWork W94666533 @default.
- W2040735861 hasVolume "27" @default.
- W2040735861 isParatext "false" @default.
- W2040735861 isRetracted "false" @default.
- W2040735861 magId "2040735861" @default.
- W2040735861 workType "article" @default.