Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040764952> ?p ?o ?g. }
- W2040764952 endingPage "222" @default.
- W2040764952 startingPage "210" @default.
- W2040764952 abstract "Combining remote sensing data and socio-economic data to quantitatively analyze urban growth is a topic growing in importance. We used square grid cells to investigate the spatial and temporal dynamics of urban growth in the Tokyo, Japan, metropolitan area by using remote sensing imagery from 1972 to 2011 and census population data from 1970 to 2010. First, we used the subspace classification method to produce land-cover maps by using Landsat images from 1972, 1987, 2001, and 2011. Next, we integrated the land-cover maps with basic grid cell maps (using the standard 1 km2 grid cell system of Japan) to represent the proportion of each land-cover category within each 1 km2 grid cell area. Finally, we combined the proportional land-cover maps and population census data to investigate the relationship between land-cover changes and population density change based on grid cells. By using grid cells it is straightforward to (i) integrate remote sensing, geographic information system (GIS), and statistical data within the cells; (ii) quantify land-cover changes in terms of the percentage of area affected and rates of change and compare them with population census data; and (iii) analyze the spatial-temporal dynamics of urban growth patterns. Between 1972 and 2011 the rapid expansion of the urban area was accompanied by extensive shrinking of the agricultural area around the new settlements. As a result, the urban growth rate exceeded the population growth rate by more than a factor of 2.6. We used the grid cells to investigate the spatial relationship between the changes of land-cover classes and population density change, and then calculated the correlation coefficients of land-cover categories and population density changes for 3 intervals between 1972 and 2011 (1972–1987, 1987–2001, and 2001–2011). The results showed that the urban/built-up density decreased in the metropolitan inner core as the city center experienced depopulation. Spatial correlation analysis showed a strong positive correlation between urban expansion and population density change (r = 0.59), and that urban expansion was strongly negatively correlated with cropland change (r = − 0.77). The results also demonstrated that grid cells allow remote sensing and statistics data to be combined, improving the knowledge, understanding, and analysis of urban dynamics." @default.
- W2040764952 created "2016-06-24" @default.
- W2040764952 creator A5014659396 @default.
- W2040764952 creator A5046924442 @default.
- W2040764952 date "2012-12-01" @default.
- W2040764952 modified "2023-10-11" @default.
- W2040764952 title "Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40 years" @default.
- W2040764952 cites W1667301406 @default.
- W2040764952 cites W1974779256 @default.
- W2040764952 cites W1975245372 @default.
- W2040764952 cites W1979058813 @default.
- W2040764952 cites W1981150122 @default.
- W2040764952 cites W1995991795 @default.
- W2040764952 cites W2009235968 @default.
- W2040764952 cites W2009598804 @default.
- W2040764952 cites W2015675278 @default.
- W2040764952 cites W2017708700 @default.
- W2040764952 cites W2017877001 @default.
- W2040764952 cites W2025411670 @default.
- W2040764952 cites W2026866169 @default.
- W2040764952 cites W2049353036 @default.
- W2040764952 cites W2050039725 @default.
- W2040764952 cites W2060045379 @default.
- W2040764952 cites W2061185772 @default.
- W2040764952 cites W2061460644 @default.
- W2040764952 cites W2061935177 @default.
- W2040764952 cites W2075722241 @default.
- W2040764952 cites W2078478672 @default.
- W2040764952 cites W2083863337 @default.
- W2040764952 cites W2090839329 @default.
- W2040764952 cites W2095005842 @default.
- W2040764952 cites W2111496197 @default.
- W2040764952 cites W2117698578 @default.
- W2040764952 cites W2118691014 @default.
- W2040764952 cites W2131022626 @default.
- W2040764952 cites W2147313352 @default.
- W2040764952 cites W2149735013 @default.
- W2040764952 cites W2150115544 @default.
- W2040764952 cites W2151610277 @default.
- W2040764952 cites W2151945899 @default.
- W2040764952 cites W2162250167 @default.
- W2040764952 cites W2200498209 @default.
- W2040764952 cites W2331855105 @default.
- W2040764952 doi "https://doi.org/10.1016/j.rse.2012.09.011" @default.
- W2040764952 hasPublicationYear "2012" @default.
- W2040764952 type Work @default.
- W2040764952 sameAs 2040764952 @default.
- W2040764952 citedByCount "184" @default.
- W2040764952 countsByYear W20407649522013 @default.
- W2040764952 countsByYear W20407649522014 @default.
- W2040764952 countsByYear W20407649522015 @default.
- W2040764952 countsByYear W20407649522016 @default.
- W2040764952 countsByYear W20407649522017 @default.
- W2040764952 countsByYear W20407649522018 @default.
- W2040764952 countsByYear W20407649522019 @default.
- W2040764952 countsByYear W20407649522020 @default.
- W2040764952 countsByYear W20407649522021 @default.
- W2040764952 countsByYear W20407649522022 @default.
- W2040764952 countsByYear W20407649522023 @default.
- W2040764952 crossrefType "journal-article" @default.
- W2040764952 hasAuthorship W2040764952A5014659396 @default.
- W2040764952 hasAuthorship W2040764952A5046924442 @default.
- W2040764952 hasConcept C100970517 @default.
- W2040764952 hasConcept C127040729 @default.
- W2040764952 hasConcept C13280743 @default.
- W2040764952 hasConcept C144024400 @default.
- W2040764952 hasConcept C149923435 @default.
- W2040764952 hasConcept C158739034 @default.
- W2040764952 hasConcept C16678853 @default.
- W2040764952 hasConcept C166957645 @default.
- W2040764952 hasConcept C187691185 @default.
- W2040764952 hasConcept C18903297 @default.
- W2040764952 hasConcept C205649164 @default.
- W2040764952 hasConcept C2778368647 @default.
- W2040764952 hasConcept C2780648208 @default.
- W2040764952 hasConcept C2908647359 @default.
- W2040764952 hasConcept C2983008078 @default.
- W2040764952 hasConcept C39853841 @default.
- W2040764952 hasConcept C41856607 @default.
- W2040764952 hasConcept C4792198 @default.
- W2040764952 hasConcept C52130261 @default.
- W2040764952 hasConcept C58640448 @default.
- W2040764952 hasConcept C62649853 @default.
- W2040764952 hasConcept C77352025 @default.
- W2040764952 hasConcept C86803240 @default.
- W2040764952 hasConceptScore W2040764952C100970517 @default.
- W2040764952 hasConceptScore W2040764952C127040729 @default.
- W2040764952 hasConceptScore W2040764952C13280743 @default.
- W2040764952 hasConceptScore W2040764952C144024400 @default.
- W2040764952 hasConceptScore W2040764952C149923435 @default.
- W2040764952 hasConceptScore W2040764952C158739034 @default.
- W2040764952 hasConceptScore W2040764952C16678853 @default.
- W2040764952 hasConceptScore W2040764952C166957645 @default.
- W2040764952 hasConceptScore W2040764952C187691185 @default.
- W2040764952 hasConceptScore W2040764952C18903297 @default.
- W2040764952 hasConceptScore W2040764952C205649164 @default.
- W2040764952 hasConceptScore W2040764952C2778368647 @default.
- W2040764952 hasConceptScore W2040764952C2780648208 @default.