Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040784001> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2040784001 endingPage "402" @default.
- W2040784001 startingPage "392" @default.
- W2040784001 abstract "A neural network based approach to model the seismic response of multi-story frame buildings is presented. The seismic response of frames is emulated using multi-layer feedforward neural networks with a backpropagation learning algorithm. Actual earthquake accelerograms and corresponding structural response obtained from analytical models of buildings are used in training the neural networks. The application of the neural network model is demonstrated by studying one to six story high building frames subjected to seismic base excitation. Furthermore, the learning ability of the network is examined for the case of multiple inputs where lateral forces at floor levels are included simultaneously with the base excitation. The effects of the network parameters on learn ing and accuracy of predictions are discussed. Based on this study, it is found that appropriately con figured neural network models can successfully learn and simulate the linear elastic dynamic be havior of multi-story buildings." @default.
- W2040784001 created "2016-06-24" @default.
- W2040784001 creator A5036576579 @default.
- W2040784001 creator A5037873608 @default.
- W2040784001 creator A5076542731 @default.
- W2040784001 date "1994-05-01" @default.
- W2040784001 modified "2023-10-14" @default.
- W2040784001 title "Seismic Response Modeling of Multi-Story Buildings Using Neural Networks" @default.
- W2040784001 cites W1970528280 @default.
- W2040784001 cites W1983722109 @default.
- W2040784001 cites W2014029345 @default.
- W2040784001 cites W2114752754 @default.
- W2040784001 doi "https://doi.org/10.1177/1045389x9400500312" @default.
- W2040784001 hasPublicationYear "1994" @default.
- W2040784001 type Work @default.
- W2040784001 sameAs 2040784001 @default.
- W2040784001 citedByCount "11" @default.
- W2040784001 countsByYear W20407840012013 @default.
- W2040784001 countsByYear W20407840012017 @default.
- W2040784001 countsByYear W20407840012020 @default.
- W2040784001 countsByYear W20407840012021 @default.
- W2040784001 countsByYear W20407840012022 @default.
- W2040784001 countsByYear W20407840012023 @default.
- W2040784001 crossrefType "journal-article" @default.
- W2040784001 hasAuthorship W2040784001A5036576579 @default.
- W2040784001 hasAuthorship W2040784001A5037873608 @default.
- W2040784001 hasAuthorship W2040784001A5076542731 @default.
- W2040784001 hasConcept C126042441 @default.
- W2040784001 hasConcept C127413603 @default.
- W2040784001 hasConcept C133731056 @default.
- W2040784001 hasConcept C134306372 @default.
- W2040784001 hasConcept C154945302 @default.
- W2040784001 hasConcept C155032097 @default.
- W2040784001 hasConcept C33923547 @default.
- W2040784001 hasConcept C38858127 @default.
- W2040784001 hasConcept C41008148 @default.
- W2040784001 hasConcept C42058472 @default.
- W2040784001 hasConcept C47702885 @default.
- W2040784001 hasConcept C50644808 @default.
- W2040784001 hasConcept C66938386 @default.
- W2040784001 hasConcept C76155785 @default.
- W2040784001 hasConceptScore W2040784001C126042441 @default.
- W2040784001 hasConceptScore W2040784001C127413603 @default.
- W2040784001 hasConceptScore W2040784001C133731056 @default.
- W2040784001 hasConceptScore W2040784001C134306372 @default.
- W2040784001 hasConceptScore W2040784001C154945302 @default.
- W2040784001 hasConceptScore W2040784001C155032097 @default.
- W2040784001 hasConceptScore W2040784001C33923547 @default.
- W2040784001 hasConceptScore W2040784001C38858127 @default.
- W2040784001 hasConceptScore W2040784001C41008148 @default.
- W2040784001 hasConceptScore W2040784001C42058472 @default.
- W2040784001 hasConceptScore W2040784001C47702885 @default.
- W2040784001 hasConceptScore W2040784001C50644808 @default.
- W2040784001 hasConceptScore W2040784001C66938386 @default.
- W2040784001 hasConceptScore W2040784001C76155785 @default.
- W2040784001 hasIssue "3" @default.
- W2040784001 hasLocation W20407840011 @default.
- W2040784001 hasOpenAccess W2040784001 @default.
- W2040784001 hasPrimaryLocation W20407840011 @default.
- W2040784001 hasRelatedWork W1604847762 @default.
- W2040784001 hasRelatedWork W2002183807 @default.
- W2040784001 hasRelatedWork W2063931099 @default.
- W2040784001 hasRelatedWork W2080531293 @default.
- W2040784001 hasRelatedWork W2086999410 @default.
- W2040784001 hasRelatedWork W2258992572 @default.
- W2040784001 hasRelatedWork W2359410228 @default.
- W2040784001 hasRelatedWork W2495344202 @default.
- W2040784001 hasRelatedWork W4386132124 @default.
- W2040784001 hasRelatedWork W97768505 @default.
- W2040784001 hasVolume "5" @default.
- W2040784001 isParatext "false" @default.
- W2040784001 isRetracted "false" @default.
- W2040784001 magId "2040784001" @default.
- W2040784001 workType "article" @default.