Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040847746> ?p ?o ?g. }
- W2040847746 endingPage "38" @default.
- W2040847746 startingPage "11" @default.
- W2040847746 abstract "A bstract : The purpose of this paper is to describe the general setting for the application of techniques from geometric mechanics and dynamical systems to the problem of asteroid pairs. The paper also gives some preliminary results on transport calculations and the associated problem of calculating binary asteroid escape rates. The dynamics of an asteroid pair, consisting of two irregularly shaped asteroids interacting through their gravitational potential is an example of a full‐body problem or FBP in which two or more extended bodies interact. One of the interesting features of the binary asteroid problem is that there is coupling between their translational and rotational degrees of freedom. General FBPs have a wide range of other interesting aspects as well, including the 6‐DOF guidance, control, and dynamics of vehicles, the dynamics of interacting or ionizing molecules, the evolution of small body, planetary, or stellar systems, and almost any other problem in which distributed bodies interact with each other or with an external field. This paper focuses on the specific case of asteroid pairs using techniques that are generally applicable to many other FBPs. This particular full two‐body problem (F2BP) concerns the dynamical evolution of two rigid bodies mutually interacting via a gravitational field. Motivation comes from planetary science, where these interactions play a key role in the evolution of asteroid rotation states and binary asteroid systems. The techniques that are applied to this problem fall into two main categories. The first is the use of geometric mechanics to obtain a description of the reduced phase space, which opens the door to a number of powerful techniques, such as the energy‐momentum method for determining the stability of equilibria and the use of variational integrators for greater accuracy in simulation. Second, techniques from computational dynamic systems are used to determine phase space structures that are important for transport phenomena and dynamic evolution." @default.
- W2040847746 created "2016-06-24" @default.
- W2040847746 creator A5017006100 @default.
- W2040847746 creator A5018631946 @default.
- W2040847746 creator A5028168271 @default.
- W2040847746 creator A5032950829 @default.
- W2040847746 creator A5053565736 @default.
- W2040847746 date "2004-05-01" @default.
- W2040847746 modified "2023-10-18" @default.
- W2040847746 title "Geometric Mechanics and the Dynamics of Asteroid Pairs" @default.
- W2040847746 cites W1492630036 @default.
- W2040847746 cites W1501770280 @default.
- W2040847746 cites W1525190645 @default.
- W2040847746 cites W1546851891 @default.
- W2040847746 cites W161529253 @default.
- W2040847746 cites W1661810726 @default.
- W2040847746 cites W183273185 @default.
- W2040847746 cites W1970271550 @default.
- W2040847746 cites W1971144344 @default.
- W2040847746 cites W1971280913 @default.
- W2040847746 cites W1971311061 @default.
- W2040847746 cites W1972360949 @default.
- W2040847746 cites W1973293814 @default.
- W2040847746 cites W1973656179 @default.
- W2040847746 cites W1976306285 @default.
- W2040847746 cites W1976860825 @default.
- W2040847746 cites W1977438596 @default.
- W2040847746 cites W1981834109 @default.
- W2040847746 cites W1982587838 @default.
- W2040847746 cites W1982908952 @default.
- W2040847746 cites W1983967997 @default.
- W2040847746 cites W1999163233 @default.
- W2040847746 cites W1999807015 @default.
- W2040847746 cites W2001859942 @default.
- W2040847746 cites W2006728351 @default.
- W2040847746 cites W2010030514 @default.
- W2040847746 cites W2013615135 @default.
- W2040847746 cites W2016663472 @default.
- W2040847746 cites W2016823199 @default.
- W2040847746 cites W2020299674 @default.
- W2040847746 cites W2022978242 @default.
- W2040847746 cites W2025381109 @default.
- W2040847746 cites W2029395589 @default.
- W2040847746 cites W2033508771 @default.
- W2040847746 cites W2035536469 @default.
- W2040847746 cites W2037323512 @default.
- W2040847746 cites W2039078443 @default.
- W2040847746 cites W2049579807 @default.
- W2040847746 cites W2050876957 @default.
- W2040847746 cites W2052976800 @default.
- W2040847746 cites W2055534727 @default.
- W2040847746 cites W2058881841 @default.
- W2040847746 cites W2060119452 @default.
- W2040847746 cites W2060400964 @default.
- W2040847746 cites W2061419425 @default.
- W2040847746 cites W2067980435 @default.
- W2040847746 cites W2068225576 @default.
- W2040847746 cites W2068552031 @default.
- W2040847746 cites W2071221104 @default.
- W2040847746 cites W2075404505 @default.
- W2040847746 cites W2076151342 @default.
- W2040847746 cites W2079452364 @default.
- W2040847746 cites W2079659692 @default.
- W2040847746 cites W2081611029 @default.
- W2040847746 cites W2083370596 @default.
- W2040847746 cites W2084386115 @default.
- W2040847746 cites W2089086364 @default.
- W2040847746 cites W2091765548 @default.
- W2040847746 cites W2103218341 @default.
- W2040847746 cites W2107785887 @default.
- W2040847746 cites W2109132421 @default.
- W2040847746 cites W2112746784 @default.
- W2040847746 cites W2116373360 @default.
- W2040847746 cites W2116910902 @default.
- W2040847746 cites W2117216772 @default.
- W2040847746 cites W2123850162 @default.
- W2040847746 cites W2124969394 @default.
- W2040847746 cites W2125929512 @default.
- W2040847746 cites W2127198539 @default.
- W2040847746 cites W2128069584 @default.
- W2040847746 cites W2138999514 @default.
- W2040847746 cites W2139359797 @default.
- W2040847746 cites W2144044560 @default.
- W2040847746 cites W2148975592 @default.
- W2040847746 cites W2152481940 @default.
- W2040847746 cites W2153506689 @default.
- W2040847746 cites W2170039048 @default.
- W2040847746 cites W2171658097 @default.
- W2040847746 cites W2282485025 @default.
- W2040847746 cites W242446277 @default.
- W2040847746 cites W2468008715 @default.
- W2040847746 cites W2521685690 @default.
- W2040847746 cites W3012636652 @default.
- W2040847746 cites W3021436502 @default.
- W2040847746 cites W4212807132 @default.
- W2040847746 cites W4236699834 @default.
- W2040847746 cites W4244106998 @default.
- W2040847746 cites W4246199042 @default.