Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040848081> ?p ?o ?g. }
- W2040848081 endingPage "3027" @default.
- W2040848081 startingPage "3019" @default.
- W2040848081 abstract "We propose Kernel Self-optimized Locality Preserving Discriminant Analysis (KSLPDA) for feature extraction and recognition. The procedure of KSLPDA is divided into two stages, i.e., one is to solve the optimal expansion of the data-dependent kernel with the proposed kernel self-optimization method, and the second is to seek the optimal projection matrix for dimensionality reduction. Since the optimal parameters of data-dependent kernel are achieved automatically through solving the constraint optimization equation, based on maximum margin criterion and Fisher criterion in the empirical feature space, KSLPDA works well on feature extraction for classification. The comparative experiments show that KSLPDA outperforms PCA, LDA, LPP, supervised LPP and kernel supervised LPP." @default.
- W2040848081 created "2016-06-24" @default.
- W2040848081 creator A5019810689 @default.
- W2040848081 creator A5050960882 @default.
- W2040848081 creator A5061831201 @default.
- W2040848081 date "2011-10-01" @default.
- W2040848081 modified "2023-09-26" @default.
- W2040848081 title "Kernel Self-optimized Locality Preserving Discriminant Analysis for feature extraction and recognition" @default.
- W2040848081 cites W1970993238 @default.
- W2040848081 cites W1974010881 @default.
- W2040848081 cites W1979306890 @default.
- W2040848081 cites W1981791883 @default.
- W2040848081 cites W1991024763 @default.
- W2040848081 cites W1994409504 @default.
- W2040848081 cites W2001141328 @default.
- W2040848081 cites W2008244396 @default.
- W2040848081 cites W2008583633 @default.
- W2040848081 cites W2010628381 @default.
- W2040848081 cites W2016787531 @default.
- W2040848081 cites W2022463363 @default.
- W2040848081 cites W2027064501 @default.
- W2040848081 cites W2041406732 @default.
- W2040848081 cites W2048857329 @default.
- W2040848081 cites W2053186076 @default.
- W2040848081 cites W2054008082 @default.
- W2040848081 cites W2056912994 @default.
- W2040848081 cites W2077628181 @default.
- W2040848081 cites W2084705412 @default.
- W2040848081 cites W2092551136 @default.
- W2040848081 cites W2100385812 @default.
- W2040848081 cites W2104294146 @default.
- W2040848081 cites W2107772706 @default.
- W2040848081 cites W2116825956 @default.
- W2040848081 cites W2121647436 @default.
- W2040848081 cites W2123111020 @default.
- W2040848081 cites W2124728898 @default.
- W2040848081 cites W2140389641 @default.
- W2040848081 cites W2164496875 @default.
- W2040848081 cites W384497013 @default.
- W2040848081 cites W4251002338 @default.
- W2040848081 doi "https://doi.org/10.1016/j.neucom.2011.04.017" @default.
- W2040848081 hasPublicationYear "2011" @default.
- W2040848081 type Work @default.
- W2040848081 sameAs 2040848081 @default.
- W2040848081 citedByCount "24" @default.
- W2040848081 countsByYear W20408480812012 @default.
- W2040848081 countsByYear W20408480812013 @default.
- W2040848081 countsByYear W20408480812014 @default.
- W2040848081 countsByYear W20408480812015 @default.
- W2040848081 countsByYear W20408480812016 @default.
- W2040848081 countsByYear W20408480812017 @default.
- W2040848081 countsByYear W20408480812019 @default.
- W2040848081 countsByYear W20408480812020 @default.
- W2040848081 countsByYear W20408480812022 @default.
- W2040848081 countsByYear W20408480812023 @default.
- W2040848081 crossrefType "journal-article" @default.
- W2040848081 hasAuthorship W2040848081A5019810689 @default.
- W2040848081 hasAuthorship W2040848081A5050960882 @default.
- W2040848081 hasAuthorship W2040848081A5061831201 @default.
- W2040848081 hasConcept C114614502 @default.
- W2040848081 hasConcept C122280245 @default.
- W2040848081 hasConcept C12267149 @default.
- W2040848081 hasConcept C134517425 @default.
- W2040848081 hasConcept C138885662 @default.
- W2040848081 hasConcept C153180895 @default.
- W2040848081 hasConcept C154945302 @default.
- W2040848081 hasConcept C181367576 @default.
- W2040848081 hasConcept C182335926 @default.
- W2040848081 hasConcept C195699287 @default.
- W2040848081 hasConcept C2779808786 @default.
- W2040848081 hasConcept C31510193 @default.
- W2040848081 hasConcept C33923547 @default.
- W2040848081 hasConcept C41008148 @default.
- W2040848081 hasConcept C41895202 @default.
- W2040848081 hasConcept C52622490 @default.
- W2040848081 hasConcept C69738355 @default.
- W2040848081 hasConcept C70518039 @default.
- W2040848081 hasConcept C74193536 @default.
- W2040848081 hasConceptScore W2040848081C114614502 @default.
- W2040848081 hasConceptScore W2040848081C122280245 @default.
- W2040848081 hasConceptScore W2040848081C12267149 @default.
- W2040848081 hasConceptScore W2040848081C134517425 @default.
- W2040848081 hasConceptScore W2040848081C138885662 @default.
- W2040848081 hasConceptScore W2040848081C153180895 @default.
- W2040848081 hasConceptScore W2040848081C154945302 @default.
- W2040848081 hasConceptScore W2040848081C181367576 @default.
- W2040848081 hasConceptScore W2040848081C182335926 @default.
- W2040848081 hasConceptScore W2040848081C195699287 @default.
- W2040848081 hasConceptScore W2040848081C2779808786 @default.
- W2040848081 hasConceptScore W2040848081C31510193 @default.
- W2040848081 hasConceptScore W2040848081C33923547 @default.
- W2040848081 hasConceptScore W2040848081C41008148 @default.
- W2040848081 hasConceptScore W2040848081C41895202 @default.
- W2040848081 hasConceptScore W2040848081C52622490 @default.
- W2040848081 hasConceptScore W2040848081C69738355 @default.
- W2040848081 hasConceptScore W2040848081C70518039 @default.
- W2040848081 hasConceptScore W2040848081C74193536 @default.
- W2040848081 hasIssue "17" @default.