Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040881337> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2040881337 endingPage "489" @default.
- W2040881337 startingPage "474" @default.
- W2040881337 abstract "Decision support systems (DSSs) perform complex computations to provide suggestions regarding decision-making and problem solving. Quite often, the DSS solutions are not fully accepted by users because DSSs work as a black box so that the users cannot fully understand where the results came from and how they were derived. Explanations of the generated DSSs solutions are expected to mitigate this situation. In this paper, two machine-learning techniques, called rough set analysis (RSA) and dependency network analysis (DNA), are proposed for mining DSS solutions. The mining results are provided to the users as explanations for those solutions. Two parts of research results are described. First, a framework applying RSA and DNA for generating explanations for DSS solutions is presented. This framework is generic and applicable to many other DSSs. Second, as a proof-of-concept, the applications of RSA and DNA techniques are demonstrated through a case study of mining patterns from input-output pairs of ReleasePlanner™, a specific DSS for product release planning. Our evaluation indicates that the explanations generated by RSA and DNA improve the overall user acceptance of results provided by this specific DSS." @default.
- W2040881337 created "2016-06-24" @default.
- W2040881337 creator A5004575969 @default.
- W2040881337 creator A5063455671 @default.
- W2040881337 date "2014-02-01" @default.
- W2040881337 modified "2023-09-24" @default.
- W2040881337 title "Two machine-learning techniques for mining solutions of the ReleasePlanner™ decision support system" @default.
- W2040881337 cites W1484738640 @default.
- W2040881337 cites W1567928596 @default.
- W2040881337 cites W1678889691 @default.
- W2040881337 cites W1870503881 @default.
- W2040881337 cites W1883898636 @default.
- W2040881337 cites W1964745934 @default.
- W2040881337 cites W1966097845 @default.
- W2040881337 cites W1967079654 @default.
- W2040881337 cites W1984553185 @default.
- W2040881337 cites W1996430422 @default.
- W2040881337 cites W1999067694 @default.
- W2040881337 cites W2001309069 @default.
- W2040881337 cites W2005146067 @default.
- W2040881337 cites W2006981958 @default.
- W2040881337 cites W2007686858 @default.
- W2040881337 cites W2011487750 @default.
- W2040881337 cites W2011817553 @default.
- W2040881337 cites W2019047064 @default.
- W2040881337 cites W2019577177 @default.
- W2040881337 cites W2020999234 @default.
- W2040881337 cites W2023290140 @default.
- W2040881337 cites W2028973107 @default.
- W2040881337 cites W2036661337 @default.
- W2040881337 cites W2043390388 @default.
- W2040881337 cites W2045358009 @default.
- W2040881337 cites W2046557742 @default.
- W2040881337 cites W2047068783 @default.
- W2040881337 cites W2060241165 @default.
- W2040881337 cites W2093454802 @default.
- W2040881337 cites W2097470060 @default.
- W2040881337 cites W2100243929 @default.
- W2040881337 cites W2104572159 @default.
- W2040881337 cites W2124474227 @default.
- W2040881337 cites W2126266130 @default.
- W2040881337 cites W2127694956 @default.
- W2040881337 cites W2139555631 @default.
- W2040881337 cites W2143040521 @default.
- W2040881337 cites W2145157296 @default.
- W2040881337 cites W2148168603 @default.
- W2040881337 cites W2304576809 @default.
- W2040881337 cites W4236137412 @default.
- W2040881337 cites W1994059374 @default.
- W2040881337 doi "https://doi.org/10.1016/j.ins.2009.12.017" @default.
- W2040881337 hasPublicationYear "2014" @default.
- W2040881337 type Work @default.
- W2040881337 sameAs 2040881337 @default.
- W2040881337 citedByCount "5" @default.
- W2040881337 countsByYear W20408813372014 @default.
- W2040881337 countsByYear W20408813372015 @default.
- W2040881337 countsByYear W20408813372017 @default.
- W2040881337 countsByYear W20408813372018 @default.
- W2040881337 countsByYear W20408813372020 @default.
- W2040881337 crossrefType "journal-article" @default.
- W2040881337 hasAuthorship W2040881337A5004575969 @default.
- W2040881337 hasAuthorship W2040881337A5063455671 @default.
- W2040881337 hasConcept C107327155 @default.
- W2040881337 hasConcept C119857082 @default.
- W2040881337 hasConcept C124101348 @default.
- W2040881337 hasConcept C154945302 @default.
- W2040881337 hasConcept C177264268 @default.
- W2040881337 hasConcept C19768560 @default.
- W2040881337 hasConcept C199360897 @default.
- W2040881337 hasConcept C2522767166 @default.
- W2040881337 hasConcept C41008148 @default.
- W2040881337 hasConceptScore W2040881337C107327155 @default.
- W2040881337 hasConceptScore W2040881337C119857082 @default.
- W2040881337 hasConceptScore W2040881337C124101348 @default.
- W2040881337 hasConceptScore W2040881337C154945302 @default.
- W2040881337 hasConceptScore W2040881337C177264268 @default.
- W2040881337 hasConceptScore W2040881337C19768560 @default.
- W2040881337 hasConceptScore W2040881337C199360897 @default.
- W2040881337 hasConceptScore W2040881337C2522767166 @default.
- W2040881337 hasConceptScore W2040881337C41008148 @default.
- W2040881337 hasLocation W20408813371 @default.
- W2040881337 hasOpenAccess W2040881337 @default.
- W2040881337 hasPrimaryLocation W20408813371 @default.
- W2040881337 hasRelatedWork W1529400504 @default.
- W2040881337 hasRelatedWork W2383067397 @default.
- W2040881337 hasRelatedWork W2888625260 @default.
- W2040881337 hasRelatedWork W2961085424 @default.
- W2040881337 hasRelatedWork W4286629047 @default.
- W2040881337 hasRelatedWork W4306321456 @default.
- W2040881337 hasRelatedWork W4306674287 @default.
- W2040881337 hasRelatedWork W63071447 @default.
- W2040881337 hasRelatedWork W65617392 @default.
- W2040881337 hasRelatedWork W4224009465 @default.
- W2040881337 hasVolume "259" @default.
- W2040881337 isParatext "false" @default.
- W2040881337 isRetracted "false" @default.
- W2040881337 magId "2040881337" @default.
- W2040881337 workType "article" @default.