Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040891197> ?p ?o ?g. }
- W2040891197 endingPage "885" @default.
- W2040891197 startingPage "849" @default.
- W2040891197 abstract "This paper presents a variational treatment of dynamic models that furnishes time-dependent conditional densities on the path or trajectory of a system's states and the time-independent densities of its parameters. These are obtained by maximising a variational action with respect to conditional densities, under a fixed-form assumption about their form. The action or path-integral of free-energy represents a lower bound on the model's log-evidence or marginal likelihood required for model selection and averaging. This approach rests on formulating the optimisation dynamically, in generalised coordinates of motion. The resulting scheme can be used for online Bayesian inversion of nonlinear dynamic causal models and is shown to outperform existing approaches, such as Kalman and particle filtering. Furthermore, it provides for dual and triple inferences on a system's states, parameters and hyperparameters using exactly the same principles. We refer to this approach as dynamic expectation maximisation (DEM)." @default.
- W2040891197 created "2016-06-24" @default.
- W2040891197 creator A5072329152 @default.
- W2040891197 creator A5083871697 @default.
- W2040891197 creator A5086852785 @default.
- W2040891197 date "2008-07-01" @default.
- W2040891197 modified "2023-09-29" @default.
- W2040891197 title "DEM: A variational treatment of dynamic systems" @default.
- W2040891197 cites W1963862400 @default.
- W2040891197 cites W1978510898 @default.
- W2040891197 cites W1982585616 @default.
- W2040891197 cites W1989524222 @default.
- W2040891197 cites W1991237518 @default.
- W2040891197 cites W1993968544 @default.
- W2040891197 cites W1999759389 @default.
- W2040891197 cites W2003035294 @default.
- W2040891197 cites W2014818218 @default.
- W2040891197 cites W2026284346 @default.
- W2040891197 cites W2027099938 @default.
- W2040891197 cites W2031320386 @default.
- W2040891197 cites W2080955301 @default.
- W2040891197 cites W2083136232 @default.
- W2040891197 cites W2113257799 @default.
- W2040891197 cites W2116705226 @default.
- W2040891197 cites W2117663940 @default.
- W2040891197 cites W2123526233 @default.
- W2040891197 cites W2126964567 @default.
- W2040891197 cites W2127958135 @default.
- W2040891197 cites W2133156350 @default.
- W2040891197 cites W2135100787 @default.
- W2040891197 cites W2139037554 @default.
- W2040891197 cites W2141460037 @default.
- W2040891197 cites W2147008239 @default.
- W2040891197 cites W2158065370 @default.
- W2040891197 cites W2160184536 @default.
- W2040891197 cites W2160337655 @default.
- W2040891197 cites W2168016523 @default.
- W2040891197 cites W2169005503 @default.
- W2040891197 cites W4240947882 @default.
- W2040891197 cites W4254306082 @default.
- W2040891197 cites W1481876203 @default.
- W2040891197 doi "https://doi.org/10.1016/j.neuroimage.2008.02.054" @default.
- W2040891197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18434205" @default.
- W2040891197 hasPublicationYear "2008" @default.
- W2040891197 type Work @default.
- W2040891197 sameAs 2040891197 @default.
- W2040891197 citedByCount "249" @default.
- W2040891197 countsByYear W20408911972012 @default.
- W2040891197 countsByYear W20408911972013 @default.
- W2040891197 countsByYear W20408911972014 @default.
- W2040891197 countsByYear W20408911972015 @default.
- W2040891197 countsByYear W20408911972016 @default.
- W2040891197 countsByYear W20408911972017 @default.
- W2040891197 countsByYear W20408911972018 @default.
- W2040891197 countsByYear W20408911972019 @default.
- W2040891197 countsByYear W20408911972020 @default.
- W2040891197 countsByYear W20408911972021 @default.
- W2040891197 countsByYear W20408911972022 @default.
- W2040891197 countsByYear W20408911972023 @default.
- W2040891197 crossrefType "journal-article" @default.
- W2040891197 hasAuthorship W2040891197A5072329152 @default.
- W2040891197 hasAuthorship W2040891197A5083871697 @default.
- W2040891197 hasAuthorship W2040891197A5086852785 @default.
- W2040891197 hasBestOaLocation W20408911972 @default.
- W2040891197 hasConcept C107673813 @default.
- W2040891197 hasConcept C11413529 @default.
- W2040891197 hasConcept C121332964 @default.
- W2040891197 hasConcept C126255220 @default.
- W2040891197 hasConcept C1276947 @default.
- W2040891197 hasConcept C13662910 @default.
- W2040891197 hasConcept C154018700 @default.
- W2040891197 hasConcept C154945302 @default.
- W2040891197 hasConcept C158622935 @default.
- W2040891197 hasConcept C199360897 @default.
- W2040891197 hasConcept C2777735758 @default.
- W2040891197 hasConcept C28826006 @default.
- W2040891197 hasConcept C33923547 @default.
- W2040891197 hasConcept C41008148 @default.
- W2040891197 hasConcept C62520636 @default.
- W2040891197 hasConcept C84114770 @default.
- W2040891197 hasConcept C8642999 @default.
- W2040891197 hasConceptScore W2040891197C107673813 @default.
- W2040891197 hasConceptScore W2040891197C11413529 @default.
- W2040891197 hasConceptScore W2040891197C121332964 @default.
- W2040891197 hasConceptScore W2040891197C126255220 @default.
- W2040891197 hasConceptScore W2040891197C1276947 @default.
- W2040891197 hasConceptScore W2040891197C13662910 @default.
- W2040891197 hasConceptScore W2040891197C154018700 @default.
- W2040891197 hasConceptScore W2040891197C154945302 @default.
- W2040891197 hasConceptScore W2040891197C158622935 @default.
- W2040891197 hasConceptScore W2040891197C199360897 @default.
- W2040891197 hasConceptScore W2040891197C2777735758 @default.
- W2040891197 hasConceptScore W2040891197C28826006 @default.
- W2040891197 hasConceptScore W2040891197C33923547 @default.
- W2040891197 hasConceptScore W2040891197C41008148 @default.
- W2040891197 hasConceptScore W2040891197C62520636 @default.
- W2040891197 hasConceptScore W2040891197C84114770 @default.
- W2040891197 hasConceptScore W2040891197C8642999 @default.