Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040908028> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2040908028 endingPage "58" @default.
- W2040908028 startingPage "48" @default.
- W2040908028 abstract "In on-demand irrigation systems, canal operators divert water from rivers to be delivered to the fields after receiving a water order from a farmer. These water orders are the result of a farmer's decision to irrigate. If farmers’ irrigation decisions could be better anticipated, it might be possible to improve canal operations using improved future short-term water demand estimates. The importance of how farmers make these irrigation decisions, however, is often overlooked because of their high variability and unpredictable nature. A hidden Markov model (HMM) was built to analyze irrigation decision behavior of farmers and make forecasts of their future decisions. The model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The paper evaluates data from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. It was found that the farmers cannot be classified into certain classes based on their irrigation decisions, but varies in their behavior from irrigation-to-irrigation across all years and crops. The factors and the level selected can be adequately used to explore the future irrigation decisions in the short term. HMMs can be used as a tool to analyze what factor and, subsequently, what level of that factor the farmer most likely based the irrigation decision on. This was possible only when the maximum likelihood (ML) estimates of model parameters were known based on the historical evidence. The study shows that the HMM is a capable tool to study irrigation behavior which is not a memory-less process." @default.
- W2040908028 created "2016-06-24" @default.
- W2040908028 creator A5044054954 @default.
- W2040908028 creator A5049221376 @default.
- W2040908028 date "2014-09-01" @default.
- W2040908028 modified "2023-09-25" @default.
- W2040908028 title "Exploring irrigation behavior at Delta, Utah using hidden Markov models" @default.
- W2040908028 cites W1539968547 @default.
- W2040908028 cites W2030520626 @default.
- W2040908028 cites W2032731438 @default.
- W2040908028 cites W2065530452 @default.
- W2040908028 cites W2071496798 @default.
- W2040908028 cites W2125838338 @default.
- W2040908028 cites W2142384583 @default.
- W2040908028 cites W2167235427 @default.
- W2040908028 doi "https://doi.org/10.1016/j.agwat.2014.06.010" @default.
- W2040908028 hasPublicationYear "2014" @default.
- W2040908028 type Work @default.
- W2040908028 sameAs 2040908028 @default.
- W2040908028 citedByCount "8" @default.
- W2040908028 countsByYear W20409080282015 @default.
- W2040908028 countsByYear W20409080282016 @default.
- W2040908028 countsByYear W20409080282017 @default.
- W2040908028 countsByYear W20409080282018 @default.
- W2040908028 countsByYear W20409080282019 @default.
- W2040908028 countsByYear W20409080282021 @default.
- W2040908028 crossrefType "journal-article" @default.
- W2040908028 hasAuthorship W2040908028A5044054954 @default.
- W2040908028 hasAuthorship W2040908028A5049221376 @default.
- W2040908028 hasConcept C112077630 @default.
- W2040908028 hasConcept C127413603 @default.
- W2040908028 hasConcept C176783924 @default.
- W2040908028 hasConcept C187320778 @default.
- W2040908028 hasConcept C18903297 @default.
- W2040908028 hasConcept C195092306 @default.
- W2040908028 hasConcept C2778093299 @default.
- W2040908028 hasConcept C39432304 @default.
- W2040908028 hasConcept C524765639 @default.
- W2040908028 hasConcept C6557445 @default.
- W2040908028 hasConcept C76886044 @default.
- W2040908028 hasConcept C86803240 @default.
- W2040908028 hasConcept C88463610 @default.
- W2040908028 hasConcept C88862950 @default.
- W2040908028 hasConceptScore W2040908028C112077630 @default.
- W2040908028 hasConceptScore W2040908028C127413603 @default.
- W2040908028 hasConceptScore W2040908028C176783924 @default.
- W2040908028 hasConceptScore W2040908028C187320778 @default.
- W2040908028 hasConceptScore W2040908028C18903297 @default.
- W2040908028 hasConceptScore W2040908028C195092306 @default.
- W2040908028 hasConceptScore W2040908028C2778093299 @default.
- W2040908028 hasConceptScore W2040908028C39432304 @default.
- W2040908028 hasConceptScore W2040908028C524765639 @default.
- W2040908028 hasConceptScore W2040908028C6557445 @default.
- W2040908028 hasConceptScore W2040908028C76886044 @default.
- W2040908028 hasConceptScore W2040908028C86803240 @default.
- W2040908028 hasConceptScore W2040908028C88463610 @default.
- W2040908028 hasConceptScore W2040908028C88862950 @default.
- W2040908028 hasLocation W20409080281 @default.
- W2040908028 hasOpenAccess W2040908028 @default.
- W2040908028 hasPrimaryLocation W20409080281 @default.
- W2040908028 hasRelatedWork W101888532 @default.
- W2040908028 hasRelatedWork W1031855829 @default.
- W2040908028 hasRelatedWork W2014851545 @default.
- W2040908028 hasRelatedWork W2018868950 @default.
- W2040908028 hasRelatedWork W2059419608 @default.
- W2040908028 hasRelatedWork W2362832145 @default.
- W2040908028 hasRelatedWork W2371367379 @default.
- W2040908028 hasRelatedWork W2752690507 @default.
- W2040908028 hasRelatedWork W2789413138 @default.
- W2040908028 hasRelatedWork W3004143390 @default.
- W2040908028 hasVolume "143" @default.
- W2040908028 isParatext "false" @default.
- W2040908028 isRetracted "false" @default.
- W2040908028 magId "2040908028" @default.
- W2040908028 workType "article" @default.