Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040930140> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2040930140 abstract "Abstract A straight line equation is generally used to estimate well inflow performance above bubble-point pressure. However, when the pressure drops below the bubble-point pressure, the trend deviates from that of the simple straight line relationship. Although some analytical methods can accurately represent the horizontal well IPR behavior above bubble point pressure, only empirical correlations are available for IPR modeling of two-phase reservoirs and hence some deviations from actual data are often observed. Artificial intelligence techniques such as neural networks, fuzzy logic, and genetic algorithms are increasingly powerful and reliable tools for petroleum engineers to analyze and interpret different areas of oil and gas industry. In this paper, two neuro-fuzzy models, including Local Linear Neuro-Fuzzy Model (LLNFM) and Adaptive Neuro Fuzzy Inference System (ANFIS) have been compared with Multi-Layer Perceptron (MLP) and empirical correlations to predict the inflow performance of horizontal oil wells experiencing two phase flow. Several reservoir models have been simulated with different bottomhole pressures. The models contained a wide range of absolute and relative permeabilities, PVT data, and horizontal well lengths. The necessary training data have been obtained from 80% of simulation results, covering a wide range of fluid and rock properties. The other 20% are used for error checking and performance testing. The results show that the Local Linear Neuro-Fuzzy Model gives the smallest error for unseen data, when compared to other intelligent models and empirical correlations." @default.
- W2040930140 created "2016-06-24" @default.
- W2040930140 creator A5066721058 @default.
- W2040930140 creator A5085683043 @default.
- W2040930140 date "2010-06-27" @default.
- W2040930140 modified "2023-09-27" @default.
- W2040930140 title "Use of Fuzzy Logic for Predicting Two-Phase Inflow Performance Relationship of Horizontal Oil Wells" @default.
- W2040930140 cites W2036471570 @default.
- W2040930140 cites W2094100334 @default.
- W2040930140 doi "https://doi.org/10.2118/133436-ms" @default.
- W2040930140 hasPublicationYear "2010" @default.
- W2040930140 type Work @default.
- W2040930140 sameAs 2040930140 @default.
- W2040930140 citedByCount "11" @default.
- W2040930140 countsByYear W20409301402014 @default.
- W2040930140 countsByYear W20409301402015 @default.
- W2040930140 countsByYear W20409301402016 @default.
- W2040930140 countsByYear W20409301402018 @default.
- W2040930140 countsByYear W20409301402019 @default.
- W2040930140 crossrefType "proceedings-article" @default.
- W2040930140 hasAuthorship W2040930140A5066721058 @default.
- W2040930140 hasAuthorship W2040930140A5085683043 @default.
- W2040930140 hasConcept C111368507 @default.
- W2040930140 hasConcept C11413529 @default.
- W2040930140 hasConcept C122383733 @default.
- W2040930140 hasConcept C127313418 @default.
- W2040930140 hasConcept C127413603 @default.
- W2040930140 hasConcept C133199616 @default.
- W2040930140 hasConcept C146978453 @default.
- W2040930140 hasConcept C154945302 @default.
- W2040930140 hasConcept C179717631 @default.
- W2040930140 hasConcept C186108316 @default.
- W2040930140 hasConcept C195975749 @default.
- W2040930140 hasConcept C204323151 @default.
- W2040930140 hasConcept C2776132308 @default.
- W2040930140 hasConcept C29470771 @default.
- W2040930140 hasConcept C33923547 @default.
- W2040930140 hasConcept C41008148 @default.
- W2040930140 hasConcept C44154836 @default.
- W2040930140 hasConcept C50644808 @default.
- W2040930140 hasConcept C58166 @default.
- W2040930140 hasConceptScore W2040930140C111368507 @default.
- W2040930140 hasConceptScore W2040930140C11413529 @default.
- W2040930140 hasConceptScore W2040930140C122383733 @default.
- W2040930140 hasConceptScore W2040930140C127313418 @default.
- W2040930140 hasConceptScore W2040930140C127413603 @default.
- W2040930140 hasConceptScore W2040930140C133199616 @default.
- W2040930140 hasConceptScore W2040930140C146978453 @default.
- W2040930140 hasConceptScore W2040930140C154945302 @default.
- W2040930140 hasConceptScore W2040930140C179717631 @default.
- W2040930140 hasConceptScore W2040930140C186108316 @default.
- W2040930140 hasConceptScore W2040930140C195975749 @default.
- W2040930140 hasConceptScore W2040930140C204323151 @default.
- W2040930140 hasConceptScore W2040930140C2776132308 @default.
- W2040930140 hasConceptScore W2040930140C29470771 @default.
- W2040930140 hasConceptScore W2040930140C33923547 @default.
- W2040930140 hasConceptScore W2040930140C41008148 @default.
- W2040930140 hasConceptScore W2040930140C44154836 @default.
- W2040930140 hasConceptScore W2040930140C50644808 @default.
- W2040930140 hasConceptScore W2040930140C58166 @default.
- W2040930140 hasLocation W20409301401 @default.
- W2040930140 hasOpenAccess W2040930140 @default.
- W2040930140 hasPrimaryLocation W20409301401 @default.
- W2040930140 hasRelatedWork W1822851171 @default.
- W2040930140 hasRelatedWork W2040930140 @default.
- W2040930140 hasRelatedWork W2110526953 @default.
- W2040930140 hasRelatedWork W2132937254 @default.
- W2040930140 hasRelatedWork W2612406495 @default.
- W2040930140 hasRelatedWork W2889019101 @default.
- W2040930140 hasRelatedWork W32657058 @default.
- W2040930140 hasRelatedWork W4289262879 @default.
- W2040930140 hasRelatedWork W4313400677 @default.
- W2040930140 hasRelatedWork W594580893 @default.
- W2040930140 isParatext "false" @default.
- W2040930140 isRetracted "false" @default.
- W2040930140 magId "2040930140" @default.
- W2040930140 workType "article" @default.