Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040981296> ?p ?o ?g. }
- W2040981296 abstract "Abstract Background Electroporation-based gene therapy and DNA vaccination are promising medical applications that depend on transfer of pDNA into target tissues with use of electric pulses. Gene electrotransfer efficiency depends on electrode configuration and electric pulse parameters, which determine the electric field distribution. Numerical modeling represents a fast and convenient method for optimization of gene electrotransfer parameters. We used numerical modeling, parameterization and numerical optimization to determine the optimum parameters for gene electrotransfer in muscle tissue. Methods We built a 3D geometry of muscle tissue with two or six needle electrodes (two rows of three needle electrodes) inserted. We performed a parametric study and optimization based on a genetic algorithm to analyze the effects of distances between the electrodes, depth of insertion, orientation of electrodes with respect to muscle fibers and applied voltage on the electric field distribution. The quality of solutions were evaluated in terms of volumes of reversibly (desired) and irreversibly (undesired) electroporated muscle tissue and total electric current through the tissue. Results Large volumes of reversibly electroporated muscle with relatively little damage can be achieved by using large distances between electrodes and large electrode insertion depths. Orienting the electrodes perpendicular to muscle fibers is significantly better than the parallel orientation for six needle electrodes, while for two electrodes the effect of orientation is not so pronounced. For each set of geometrical parameters, the window of optimal voltages is quite narrow, with lower voltages resulting in low volumes of reversibly electroporated tissue and higher voltages in high volumes of irreversibly electroporated tissue. Furthermore, we determined which applied voltages are needed to achieve the optimal field distribution for different distances between electrodes. Conclusion The presented numerical study of gene electrotransfer is the first that demonstrates optimization of parameters for gene electrotransfer on tissue level. Our method of modeling and optimization is generic and can be applied to different electrode configurations, pulsing protocols and different tissues. Such numerical models, together with knowledge of tissue properties can provide useful guidelines for researchers and physicians in selecting optimal parameters for in vivo gene electrotransfer, thus reducing the number of animals used in studies of gene therapy and DNA vaccination." @default.
- W2040981296 created "2016-06-24" @default.
- W2040981296 creator A5027616938 @default.
- W2040981296 creator A5045271558 @default.
- W2040981296 creator A5071211846 @default.
- W2040981296 creator A5072269581 @default.
- W2040981296 date "2010-11-04" @default.
- W2040981296 modified "2023-10-03" @default.
- W2040981296 title "Numerical optimization of gene electrotransfer into muscle tissue" @default.
- W2040981296 cites W1490324405 @default.
- W2040981296 cites W1523649511 @default.
- W2040981296 cites W1606853210 @default.
- W2040981296 cites W171819726 @default.
- W2040981296 cites W1813678236 @default.
- W2040981296 cites W1963965298 @default.
- W2040981296 cites W1967358886 @default.
- W2040981296 cites W1972013966 @default.
- W2040981296 cites W1972279923 @default.
- W2040981296 cites W1972913617 @default.
- W2040981296 cites W1973251563 @default.
- W2040981296 cites W1979162850 @default.
- W2040981296 cites W1979845188 @default.
- W2040981296 cites W1983480010 @default.
- W2040981296 cites W1984064553 @default.
- W2040981296 cites W1990459596 @default.
- W2040981296 cites W1995850971 @default.
- W2040981296 cites W1998740008 @default.
- W2040981296 cites W1998962655 @default.
- W2040981296 cites W2000918253 @default.
- W2040981296 cites W2004469159 @default.
- W2040981296 cites W2009068186 @default.
- W2040981296 cites W2009644962 @default.
- W2040981296 cites W2010105484 @default.
- W2040981296 cites W2016101110 @default.
- W2040981296 cites W2018744718 @default.
- W2040981296 cites W2020324580 @default.
- W2040981296 cites W2022701397 @default.
- W2040981296 cites W2023367330 @default.
- W2040981296 cites W2028898357 @default.
- W2040981296 cites W2031145204 @default.
- W2040981296 cites W2033756314 @default.
- W2040981296 cites W2036288764 @default.
- W2040981296 cites W2043267711 @default.
- W2040981296 cites W2044632997 @default.
- W2040981296 cites W2045225530 @default.
- W2040981296 cites W2047256102 @default.
- W2040981296 cites W2051839442 @default.
- W2040981296 cites W2054457322 @default.
- W2040981296 cites W2055186346 @default.
- W2040981296 cites W2055818315 @default.
- W2040981296 cites W2056104198 @default.
- W2040981296 cites W2063146649 @default.
- W2040981296 cites W2069876482 @default.
- W2040981296 cites W2069934604 @default.
- W2040981296 cites W2073622625 @default.
- W2040981296 cites W2075010947 @default.
- W2040981296 cites W2079473304 @default.
- W2040981296 cites W2082179624 @default.
- W2040981296 cites W2082371015 @default.
- W2040981296 cites W2082518610 @default.
- W2040981296 cites W2083058838 @default.
- W2040981296 cites W2083294463 @default.
- W2040981296 cites W2085516892 @default.
- W2040981296 cites W2085749017 @default.
- W2040981296 cites W2086602249 @default.
- W2040981296 cites W2090087191 @default.
- W2040981296 cites W2094187045 @default.
- W2040981296 cites W2094626068 @default.
- W2040981296 cites W2100655326 @default.
- W2040981296 cites W2103393861 @default.
- W2040981296 cites W2103460546 @default.
- W2040981296 cites W2104881278 @default.
- W2040981296 cites W2105413362 @default.
- W2040981296 cites W2117933504 @default.
- W2040981296 cites W2119124470 @default.
- W2040981296 cites W2119630670 @default.
- W2040981296 cites W2121830723 @default.
- W2040981296 cites W2124148893 @default.
- W2040981296 cites W2129827300 @default.
- W2040981296 cites W2133561274 @default.
- W2040981296 cites W2136535174 @default.
- W2040981296 cites W2137440275 @default.
- W2040981296 cites W2138460990 @default.
- W2040981296 cites W2140031668 @default.
- W2040981296 cites W2142802916 @default.
- W2040981296 cites W2145028145 @default.
- W2040981296 cites W2150420846 @default.
- W2040981296 cites W2155777423 @default.
- W2040981296 cites W2162843292 @default.
- W2040981296 cites W2167150295 @default.
- W2040981296 cites W2410642256 @default.
- W2040981296 cites W3024831056 @default.
- W2040981296 cites W4241685416 @default.
- W2040981296 doi "https://doi.org/10.1186/1475-925x-9-66" @default.
- W2040981296 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2990758" @default.
- W2040981296 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21050435" @default.
- W2040981296 hasPublicationYear "2010" @default.
- W2040981296 type Work @default.
- W2040981296 sameAs 2040981296 @default.
- W2040981296 citedByCount "29" @default.