Matches in SemOpenAlex for { <https://semopenalex.org/work/W2040985763> ?p ?o ?g. }
- W2040985763 endingPage "40" @default.
- W2040985763 startingPage "32" @default.
- W2040985763 abstract "Recent studies using simulated functional magnetic resonance imaging (fMRI) data show that independent vector analysis (IVA) is a superior solution for capturing spatial subject variability when compared with the widely used group independent component analysis (GICA). Retaining such variability is of fundamental importance for identifying spatially localized group differences in intrinsic brain networks. Few studies on capturing subject variability and order selection have evaluated real fMRI data. Comparison of multivariate components generated by multiple algorithms is not straightforward. The main difficulties are finding concise methods to extract meaningful features and comparing multiple components despite lack of a ground truth. In this paper, we present a graph-theoretical (GT) approach to effectively compare the ability of multiple multivariate algorithms to capture subject variability for real fMRI data for effective group comparisons. The GT approach is applied to components generated from fMRI data, collected from individuals with stroke, before and after a rehabilitation intervention. IVA is compared with widely used GICA for the purpose of group discrimination in terms of GT features. In addition, masks are applied for motor related components generated by both algorithms. Results show that IVA better captures subject variability producing more activated voxels and generating components with less mutual information in the spatial domain than Group ICA. IVA-generated components result in smaller p-values and clearer trends in GT features." @default.
- W2040985763 created "2016-06-24" @default.
- W2040985763 creator A5014945816 @default.
- W2040985763 creator A5025657412 @default.
- W2040985763 creator A5032850756 @default.
- W2040985763 creator A5060798483 @default.
- W2040985763 creator A5061236798 @default.
- W2040985763 creator A5069823750 @default.
- W2040985763 date "2015-05-01" @default.
- W2040985763 modified "2023-10-16" @default.
- W2040985763 title "Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA" @default.
- W2040985763 cites W1869362176 @default.
- W2040985763 cites W1973741448 @default.
- W2040985763 cites W1974590317 @default.
- W2040985763 cites W1985327120 @default.
- W2040985763 cites W1999653836 @default.
- W2040985763 cites W2002526995 @default.
- W2040985763 cites W2006578134 @default.
- W2040985763 cites W2021189660 @default.
- W2040985763 cites W2027017271 @default.
- W2040985763 cites W2033078279 @default.
- W2040985763 cites W2033615409 @default.
- W2040985763 cites W2039031131 @default.
- W2040985763 cites W2055637322 @default.
- W2040985763 cites W2057138653 @default.
- W2040985763 cites W2063237661 @default.
- W2040985763 cites W2082098782 @default.
- W2040985763 cites W2082207932 @default.
- W2040985763 cites W2091177453 @default.
- W2040985763 cites W2111464173 @default.
- W2040985763 cites W2117995966 @default.
- W2040985763 cites W2130654277 @default.
- W2040985763 cites W2133680422 @default.
- W2040985763 cites W2154997432 @default.
- W2040985763 cites W2157546299 @default.
- W2040985763 cites W2159242554 @default.
- W2040985763 doi "https://doi.org/10.1016/j.jneumeth.2015.03.019" @default.
- W2040985763 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4961734" @default.
- W2040985763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25797843" @default.
- W2040985763 hasPublicationYear "2015" @default.
- W2040985763 type Work @default.
- W2040985763 sameAs 2040985763 @default.
- W2040985763 citedByCount "34" @default.
- W2040985763 countsByYear W20409857632015 @default.
- W2040985763 countsByYear W20409857632016 @default.
- W2040985763 countsByYear W20409857632017 @default.
- W2040985763 countsByYear W20409857632018 @default.
- W2040985763 countsByYear W20409857632020 @default.
- W2040985763 countsByYear W20409857632021 @default.
- W2040985763 countsByYear W20409857632022 @default.
- W2040985763 countsByYear W20409857632023 @default.
- W2040985763 crossrefType "journal-article" @default.
- W2040985763 hasAuthorship W2040985763A5014945816 @default.
- W2040985763 hasAuthorship W2040985763A5025657412 @default.
- W2040985763 hasAuthorship W2040985763A5032850756 @default.
- W2040985763 hasAuthorship W2040985763A5060798483 @default.
- W2040985763 hasAuthorship W2040985763A5061236798 @default.
- W2040985763 hasAuthorship W2040985763A5069823750 @default.
- W2040985763 hasBestOaLocation W20409857632 @default.
- W2040985763 hasConcept C119857082 @default.
- W2040985763 hasConcept C132525143 @default.
- W2040985763 hasConcept C153180895 @default.
- W2040985763 hasConcept C154945302 @default.
- W2040985763 hasConcept C15744967 @default.
- W2040985763 hasConcept C161584116 @default.
- W2040985763 hasConcept C169760540 @default.
- W2040985763 hasConcept C2779226451 @default.
- W2040985763 hasConcept C38180746 @default.
- W2040985763 hasConcept C41008148 @default.
- W2040985763 hasConcept C51432778 @default.
- W2040985763 hasConcept C54170458 @default.
- W2040985763 hasConcept C80444323 @default.
- W2040985763 hasConceptScore W2040985763C119857082 @default.
- W2040985763 hasConceptScore W2040985763C132525143 @default.
- W2040985763 hasConceptScore W2040985763C153180895 @default.
- W2040985763 hasConceptScore W2040985763C154945302 @default.
- W2040985763 hasConceptScore W2040985763C15744967 @default.
- W2040985763 hasConceptScore W2040985763C161584116 @default.
- W2040985763 hasConceptScore W2040985763C169760540 @default.
- W2040985763 hasConceptScore W2040985763C2779226451 @default.
- W2040985763 hasConceptScore W2040985763C38180746 @default.
- W2040985763 hasConceptScore W2040985763C41008148 @default.
- W2040985763 hasConceptScore W2040985763C51432778 @default.
- W2040985763 hasConceptScore W2040985763C54170458 @default.
- W2040985763 hasConceptScore W2040985763C80444323 @default.
- W2040985763 hasLocation W20409857631 @default.
- W2040985763 hasLocation W20409857632 @default.
- W2040985763 hasLocation W20409857633 @default.
- W2040985763 hasLocation W20409857634 @default.
- W2040985763 hasOpenAccess W2040985763 @default.
- W2040985763 hasPrimaryLocation W20409857631 @default.
- W2040985763 hasRelatedWork W1570805059 @default.
- W2040985763 hasRelatedWork W1578824628 @default.
- W2040985763 hasRelatedWork W1791688437 @default.
- W2040985763 hasRelatedWork W1974427739 @default.
- W2040985763 hasRelatedWork W1978357124 @default.
- W2040985763 hasRelatedWork W2032728545 @default.
- W2040985763 hasRelatedWork W2036849593 @default.