Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041036389> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2041036389 endingPage "54" @default.
- W2041036389 startingPage "45" @default.
- W2041036389 abstract "현재까지 존재하는 무수한 악성 행위에 대응하기 위해서 다양한 기법들이 제안되었다 그러나 현존하는 악성행위 탐지 기법들은 기존의 행위에 대한 변종들과 새로운 형태의 악성행위에 대해서 적시 적절하게 대응하지 못하였고 긍정 오류(false positive)와 틀린 부정(negative false) 등을 해결하지 못한 한계점을 가지고 있다. 위와 같은 문제점을 개선하고자 한다. 여기서는 소스코드의 기본 단위(token)들을 개념화하여 악성행위 탐지에 응용하고자 한다. 악성 코드를 개념 그래프로 정의할 수 있고, 정의된 그래프를 통하여 정규화 표현으로 바꿔서 코드 내 악성행위 유사관계를 비교할 수 있다. 따라서 본 논문에서는, 소스코드를 개념 그래프화하는 방법을 제시하며, 정확한 악성행위 판별을 위한 유사도 측정방안을 제시한다. 실험결과, 향상된 악성 코드 탐지율을 얻었다. Nowadays, a lot of techniques have been applied for the detection of malicious behavior. However, the current techniques taken into practice are facing with the challenge of much variations of the original malicious behavior, and it is impossible to respond the new forms of behavior appropriately and timely. There are also some limitations can not be solved, such as the error affirmation (positive false) and mistaken obliquity (negative false). With the questions above, we suggest a new method here to improve the current situation. To detect the malicious code, we put forward dealing with the basic source code units through the conceptual graph. Basically, we use conceptual graph to define malicious behavior, and then we are able to compare the similarity relations of the malicious behavior by testing the formalized values which generated by the predefined graphs in the code. In this paper, we show how to make a conceptual graph and propose an efficient method for similarity measure to discern the malicious behavior. As a result of our experiment, we can get more efficient detection rate." @default.
- W2041036389 created "2016-06-24" @default.
- W2041036389 creator A5004684765 @default.
- W2041036389 creator A5024832015 @default.
- W2041036389 creator A5045959126 @default.
- W2041036389 creator A5070496831 @default.
- W2041036389 date "2006-02-01" @default.
- W2041036389 modified "2023-09-27" @default.
- W2041036389 title "A Method for Efficient Malicious Code Detection based on the Conceptual Graphs" @default.
- W2041036389 doi "https://doi.org/10.3745/kipstc.2006.13c.1.045" @default.
- W2041036389 hasPublicationYear "2006" @default.
- W2041036389 type Work @default.
- W2041036389 sameAs 2041036389 @default.
- W2041036389 citedByCount "0" @default.
- W2041036389 crossrefType "journal-article" @default.
- W2041036389 hasAuthorship W2041036389A5004684765 @default.
- W2041036389 hasAuthorship W2041036389A5024832015 @default.
- W2041036389 hasAuthorship W2041036389A5045959126 @default.
- W2041036389 hasAuthorship W2041036389A5070496831 @default.
- W2041036389 hasBestOaLocation W20410363891 @default.
- W2041036389 hasConcept C103278499 @default.
- W2041036389 hasConcept C115961682 @default.
- W2041036389 hasConcept C124101348 @default.
- W2041036389 hasConcept C132525143 @default.
- W2041036389 hasConcept C154945302 @default.
- W2041036389 hasConcept C161301231 @default.
- W2041036389 hasConcept C177264268 @default.
- W2041036389 hasConcept C199360897 @default.
- W2041036389 hasConcept C234837 @default.
- W2041036389 hasConcept C2776760102 @default.
- W2041036389 hasConcept C38652104 @default.
- W2041036389 hasConcept C41008148 @default.
- W2041036389 hasConcept C43126263 @default.
- W2041036389 hasConcept C48145219 @default.
- W2041036389 hasConcept C80444323 @default.
- W2041036389 hasConceptScore W2041036389C103278499 @default.
- W2041036389 hasConceptScore W2041036389C115961682 @default.
- W2041036389 hasConceptScore W2041036389C124101348 @default.
- W2041036389 hasConceptScore W2041036389C132525143 @default.
- W2041036389 hasConceptScore W2041036389C154945302 @default.
- W2041036389 hasConceptScore W2041036389C161301231 @default.
- W2041036389 hasConceptScore W2041036389C177264268 @default.
- W2041036389 hasConceptScore W2041036389C199360897 @default.
- W2041036389 hasConceptScore W2041036389C234837 @default.
- W2041036389 hasConceptScore W2041036389C2776760102 @default.
- W2041036389 hasConceptScore W2041036389C38652104 @default.
- W2041036389 hasConceptScore W2041036389C41008148 @default.
- W2041036389 hasConceptScore W2041036389C43126263 @default.
- W2041036389 hasConceptScore W2041036389C48145219 @default.
- W2041036389 hasConceptScore W2041036389C80444323 @default.
- W2041036389 hasIssue "1" @default.
- W2041036389 hasLocation W20410363891 @default.
- W2041036389 hasOpenAccess W2041036389 @default.
- W2041036389 hasPrimaryLocation W20410363891 @default.
- W2041036389 hasRelatedWork W2001919569 @default.
- W2041036389 hasRelatedWork W2281360585 @default.
- W2041036389 hasRelatedWork W2366828174 @default.
- W2041036389 hasRelatedWork W2737894786 @default.
- W2041036389 hasRelatedWork W2911646622 @default.
- W2041036389 hasRelatedWork W2972694157 @default.
- W2041036389 hasRelatedWork W3033962221 @default.
- W2041036389 hasRelatedWork W3045537857 @default.
- W2041036389 hasRelatedWork W3174964092 @default.
- W2041036389 hasRelatedWork W4224280049 @default.
- W2041036389 hasVolume "13C" @default.
- W2041036389 isParatext "false" @default.
- W2041036389 isRetracted "false" @default.
- W2041036389 magId "2041036389" @default.
- W2041036389 workType "article" @default.