Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041185135> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2041185135 abstract "Similarity based computational methods are a useful tool for predicting protein functions from protein-protein interaction (PPI) datasets. Although various similarity-based prediction algorithms have been proposed, unsatisfactory prediction results have occurred on many occasions. The purpose of this type of algorithm is to predict functions of an unannotated protein from the functions of those proteins that are similar to the unannotated protein. Therefore, the prediction quality largely depends on how to select a set of proper proteins (i.e., a prediction domain) from which the functions of an unannotated protein are predicted, and how to measure the similarity between proteins. Another issue with existing algorithms is they only believe the function prediction is a one-off procedure, ignoring the fact that interactions amongst proteins are mutual and dynamic in terms of similarity when predicting functions. How to resolve these major issues to increase prediction quality remains a challenge in computational biology.In this paper, we propose an innovative approach to predict protein functions of unannotated proteins iteratively from a PPI dataset. The iterative approach takes into account the mutual and dynamic features of protein interactions when predicting functions, and addresses the issues of protein similarity measurement and prediction domain selection by introducing into the prediction algorithm a new semantic protein similarity and a method of selecting the multi-layer prediction domain. The new protein similarity is based on the multi-layered information carried by protein functions. The evaluations conducted on real protein interaction datasets demonstrated that the proposed iterative function prediction method outperformed other similar or non-iterative methods, and provided better prediction results.The new protein similarity derived from multi-layered information of protein functions more reasonably reflects the intrinsic relationships among proteins, and significant improvement to the prediction quality can occur through incorporation of mutual and dynamic features of protein interactions into the prediction algorithm." @default.
- W2041185135 created "2016-06-24" @default.
- W2041185135 creator A5024440200 @default.
- W2041185135 creator A5062082949 @default.
- W2041185135 creator A5063038462 @default.
- W2041185135 date "2012-04-01" @default.
- W2041185135 modified "2023-09-28" @default.
- W2041185135 title "Exploiting multi-layered information to iteratively predict protein functions" @default.
- W2041185135 cites W1486817521 @default.
- W2041185135 cites W1558365920 @default.
- W2041185135 cites W1647729745 @default.
- W2041185135 cites W1968893730 @default.
- W2041185135 cites W1975210552 @default.
- W2041185135 cites W2011986160 @default.
- W2041185135 cites W2013520054 @default.
- W2041185135 cites W2055043387 @default.
- W2041185135 cites W2081931663 @default.
- W2041185135 cites W2088216962 @default.
- W2041185135 cites W2090766471 @default.
- W2041185135 cites W2100585269 @default.
- W2041185135 cites W2107710781 @default.
- W2041185135 cites W2117412805 @default.
- W2041185135 cites W2124821604 @default.
- W2041185135 cites W2131456688 @default.
- W2041185135 cites W2136479434 @default.
- W2041185135 cites W2136850043 @default.
- W2041185135 cites W2137917513 @default.
- W2041185135 cites W2138582694 @default.
- W2041185135 cites W2147461734 @default.
- W2041185135 cites W2152495216 @default.
- W2041185135 cites W2171692650 @default.
- W2041185135 cites W3199143553 @default.
- W2041185135 doi "https://doi.org/10.1016/j.mbs.2012.02.004" @default.
- W2041185135 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22391459" @default.
- W2041185135 hasPublicationYear "2012" @default.
- W2041185135 type Work @default.
- W2041185135 sameAs 2041185135 @default.
- W2041185135 citedByCount "4" @default.
- W2041185135 countsByYear W20411851352013 @default.
- W2041185135 countsByYear W20411851352014 @default.
- W2041185135 countsByYear W20411851352017 @default.
- W2041185135 countsByYear W20411851352020 @default.
- W2041185135 crossrefType "journal-article" @default.
- W2041185135 hasAuthorship W2041185135A5024440200 @default.
- W2041185135 hasAuthorship W2041185135A5062082949 @default.
- W2041185135 hasAuthorship W2041185135A5063038462 @default.
- W2041185135 hasConcept C103278499 @default.
- W2041185135 hasConcept C104317684 @default.
- W2041185135 hasConcept C115961682 @default.
- W2041185135 hasConcept C119857082 @default.
- W2041185135 hasConcept C124101348 @default.
- W2041185135 hasConcept C134306372 @default.
- W2041185135 hasConcept C14036430 @default.
- W2041185135 hasConcept C154945302 @default.
- W2041185135 hasConcept C177264268 @default.
- W2041185135 hasConcept C199360897 @default.
- W2041185135 hasConcept C207060522 @default.
- W2041185135 hasConcept C2986374874 @default.
- W2041185135 hasConcept C33923547 @default.
- W2041185135 hasConcept C36503486 @default.
- W2041185135 hasConcept C41008148 @default.
- W2041185135 hasConcept C55493867 @default.
- W2041185135 hasConcept C78458016 @default.
- W2041185135 hasConcept C86803240 @default.
- W2041185135 hasConceptScore W2041185135C103278499 @default.
- W2041185135 hasConceptScore W2041185135C104317684 @default.
- W2041185135 hasConceptScore W2041185135C115961682 @default.
- W2041185135 hasConceptScore W2041185135C119857082 @default.
- W2041185135 hasConceptScore W2041185135C124101348 @default.
- W2041185135 hasConceptScore W2041185135C134306372 @default.
- W2041185135 hasConceptScore W2041185135C14036430 @default.
- W2041185135 hasConceptScore W2041185135C154945302 @default.
- W2041185135 hasConceptScore W2041185135C177264268 @default.
- W2041185135 hasConceptScore W2041185135C199360897 @default.
- W2041185135 hasConceptScore W2041185135C207060522 @default.
- W2041185135 hasConceptScore W2041185135C2986374874 @default.
- W2041185135 hasConceptScore W2041185135C33923547 @default.
- W2041185135 hasConceptScore W2041185135C36503486 @default.
- W2041185135 hasConceptScore W2041185135C41008148 @default.
- W2041185135 hasConceptScore W2041185135C55493867 @default.
- W2041185135 hasConceptScore W2041185135C78458016 @default.
- W2041185135 hasConceptScore W2041185135C86803240 @default.
- W2041185135 hasLocation W20411851351 @default.
- W2041185135 hasLocation W20411851352 @default.
- W2041185135 hasOpenAccess W2041185135 @default.
- W2041185135 hasPrimaryLocation W20411851351 @default.
- W2041185135 hasRelatedWork W1819019724 @default.
- W2041185135 hasRelatedWork W1987231763 @default.
- W2041185135 hasRelatedWork W2084200259 @default.
- W2041185135 hasRelatedWork W2793433991 @default.
- W2041185135 hasRelatedWork W3153737052 @default.
- W2041185135 hasRelatedWork W4200494388 @default.
- W2041185135 hasRelatedWork W4225307033 @default.
- W2041185135 hasRelatedWork W73805934 @default.
- W2041185135 hasRelatedWork W84378237 @default.
- W2041185135 hasRelatedWork W878134313 @default.
- W2041185135 isParatext "false" @default.
- W2041185135 isRetracted "false" @default.
- W2041185135 magId "2041185135" @default.
- W2041185135 workType "article" @default.